Glycosides
Anthracenes
Anna Drew

with grateful acknowledgement for inspirational teaching received at
The School of Pharmacy, University of London
Glycosides

• more important in medicine than a lot of drugs
• occur in higher plant tissues in very small amounts
• also fungal and bacterial cells (exuded in medium) and animals
• formed by a biochemical reaction that makes a water insoluble compound more polar than a water soluble molecule
• hence can be removed from an organic system
• man forms them in the liver as part of the process of detoxification and they are excreted via urine
• mammalian glycosides are simple compounds whereas plant glycosides are much larger and chemically more complex
• higher plant glycosides used therapeutically
• have a bio-action
 – therapeutic in low doses, toxic in excess
 – ie have a narrow therapeutic index

• Glycosides =
 – aglycone / ‘genin’ - hydrocarbon part
 – + glycone - sugar part (water solubility)

• Ether linked:
 – X-OH + R-OH \leftrightarrow X-O-R + H$_2$O (glycosidic bond)
 – unstable
 – susceptible to hydrolysis (dilute acid, enzymes)
• important to determine which isomer has the activity
 - α or β glycosidal bond from an α or β pyranose sugar ring

- natural glycosides tend to have β-linkage
- acid hydrolysis to cleave α or β glycosides
- identify component part of molecule
- check stereochemistry with β-glucosidase
• Sugars vary
 – glucose, rhamnose, xylose, etc
 – simple mono- to 2-12 unit polysaccharides
 – can be branched

• (To determine non-linear linkages)
 – acetylate or methylate the sugar
 – above taken up by all free –OH groups
 – hydrolyse – determine by NMR technique

• Other possible linkages
 – direct C-C eg aloes of cascara
 • resistant to hydrolysis
 • oxidise C link with ferric chloride and split bond
 – S-linked eg in spices giving hotness, mustards
 • aglycones must have S-H in it to link up
 • very unstable – breakdown and liberate oil of mustard (pungent)
 – N-linked eg antitumour drugs (can straddle DNA strands)
 • sugar OH + NH aglycone -> R-N-X -> the nucleic acid
 • (ribose based link is N-glycosidal bond)
Classification

• On the basis of aglycone structure

• [1] Saponins (soaps)
 • aglycone = trans-linked steroid

• [2] Cardiac glycosides (poisons)
 • from squill, digitalis, lily of the valley
 • used as crow poisons through history
 • aglycone = cis-linked steroid

• [3] Anthracene derivatives (purgatives)
 • also poisons, cause inconvenience not death

• [4] Flavenoids and coumarins
 • yellow or orange coloured
 • phenolic compounds with aromatic rings
– (a) Flavenoids
 • mainly anti-inflammatory drugs, cyclooxygenase inhibitors
 • inhibit inflammatory mediators (prostaglandins)
– (b) Coumarins
 • eg from clover - basis of anticoagulants

• [5] Simple phenols
 • from willow and poplar bark
 • analgesics – aspirin

 • S-linked compounds

• [7] Cyanogenic compounds
 • breakdown liberating CN
 • found in ‘cherry’ bark and kernel
 • also liberate benzaldehyde on breakdown (almond smell)
Preparation & extraction

• Polar substances – soluble in polar solvents

• Extraction:
 – starting material should be well dried and carefully stored
 • enzymes will decompose glycosides if >10% water content remaining
 – cold extraction procedure (room temp)
 • with percolation and maceration
 – water, water/alcohol mixture or alcohol
 • depending on mol wt
• **Purification:**
 - solvent/solvent partition
 - H_2O/hexane or CH_3Cl to remove pigments in the non-polar phase
 - or adsorption methods
 - make column and do chromatography
 - or mix with adsorbants (Celite, Fuller’s Earth, graphite)
 - or use heavy metal to precipitate out impurities
 - should end up with clear (or coloured) alcoholic extract
 - crystallisation – final stage
Anthracene glycosides

- purgative principles
- found in several plant drugs
- occur in glycoside form
 - and less commonly in aglycone form
 - free aglycones have to be removed in assay because inactive
- 2-3% w/w (both forms)
- based on anthracene molecule
• 3 oxygenated or substituted forms of the anthracene molecule exist

- all flat, planar structures
 • has to be free rotation at dimer join for potency
 • flat molecule can get into gut mucosa and irritate eventually causing peristalsis
• 4 aglycone structures
 – all existing in any of the 3 forms
 – phenolic group is the irritant principle

Rhein anthraquinone

Chrysophanol

Aloe-emodin

Emodin
• biologically active part is the glycoside
 • tend to have simple sugars attached

[1] monoglucoside at C8
 • O-linked

[2] diglucoside at C1 and C8
[3] ‘C’- glycosides
 - have a direct C linkage – aloins

[4] ‘CO’-glycosides
 - O-linked at 1 and 8
 - C linked as in aloins
 - all types combined to give complex mixture in the plant
 - assays different since each compound has different purgative potency

* resistant to hydrolysis (need to use ferric chloride)
Extraction

- most quite polar
 - due to phenols and sugars
- water|alcohol or mixtures of them used
- dried plant material percolation in industrial columns with dilute alcohol
- tincture produced
- partitioned with chloroform|ether to clean up (remove green pigment, fats, lipids)
- clean yellow tincture subjected to column chromatography
- gradual elution of individual glycosides
- crystallised for purity
• pure glycoside makes expensive products
• cheaper to
 – use a clean tincture to make a dry extract
 – used for granules in tablets
 – standardise final tablet

• Identification:
 – easy – coloured orange-yellow
 – chemical test: Borntrager’s test
 – in alkali (KOH, NH$_3$) phenolic groups -> phenate complex (bright red)
 – TLC using silica gel – plates do not have to be sprayed since yellow but can confirm with KOH (red spot)
 – mass spectrometry
Mechanism of action

• Molecules have to possess certain features for activity:
 – [1] glycosides
 – [2] carbonyl keto function on centre ring
 – [3] 1,-8- positions have to have –OH

• Potency:
 – anthrone > anthraquinone> dianthrone

• Aglycones not therapeutically active in animals – lipid soluble – absorbed in stomach and never reach colon to produce a local effect
• Highly active phenolic group irritant to mucosa

• Glycosides very water soluble – reach large intestine where they are hydrolysed by *E. coli* enzymes – become lipid soluble – absorbed into circulation – on way through gut wall disturb Aubach nerve plexus causing smooth muscle to contract – peristalsis

• 5-8 hours to act
 – take night before
 – in low doses – drug metabolised by liver and recirculated via bile to give more effect
 – people esp elderly can become reliant on them needing higher dose to produce an effect
 – carcinogenic – melanosis coli
Assay

• Isolating each active component too expensive
 – powdered plant material (tablets or capsules)
 – or aqueous (fluid) extracts used

• Difficult – each component in mixture has different potency

• Safest assay is:

[i] biological assay of dry material

 – wet faeces method – cage full of mice or rats on a grid with collecting tray below – feed eg senna in food
 – collect faeces and weigh – calculate ED_{50} – oral dose in food correlating to faeces produced
[ii] chemical assay
 – spectroscopy – quick and cheap, more accurate but gives same emphasis to each compound

- To remove aglycones
 – make an extract, shake with ether
 • discard ether phase containing free aglycones
 – then acid hydrolyse aqueous phase containing glycosides
 • with ferric chloride for direct C- bonds
 • and with dilute HCl
 – extract in CHCl₃
 • gives aglycones from glycosides
 – colour with magnesium acetate
 • then measure on spectrophotometer peak 515nm
 – OR do colourimetric assay – red in alkali - 250nm
Senna

- **Cassia angustifolia**
 - Tinnevelly (India)
- **Cassia acutifolia**
 - Alexandria (Egypt)
- (Leguminosae)
- dry pods, leaves or mixture used
- tablet form
 - eg sennakot
 - (isolation of anthraquinone too expensive)
- kinder action - use
 - pregnant women
 - iron constipation
- activity & content same
Chemical constituents:

(i) 1 and 1,8 ‘O’ glucosides
 = 1st series glycosides
 aglycones: rhein, aloe emodin

(ii) dimeric dianthrones
 = 2nd series
 reduced products

dimer can be split into two parts with FeCl\textsubscript{3}
hydrolysis and monomer aglycones assayed for
Cascara

- *Rhamnus pershiana* (Rhamnaceae)
- bark extract
 - collected, dried and stored for 12 months (↓ anthraquinone content -> less toxic)
- modern substance
 - discovered 100 years ago
 - Rocky Mtns, W.Coast, US
- more violent purgative
 - griping action
 - harder to eliminate
- **Use:** night before to clear bowels for x-rays and barium meal
Chemical constituents:

(i) 4 primary glycosides
 - O- and C- linkages

To get aglycones FeCl$_3$
To get aloins oxidise with acid

(ii) C-glycosides - two aloins
 - barbaloin - derived from aloe-EMODIN
 - chrysaloin - derived from chrysophanol

(iii) a number of O-glycosides
 - derived from emodin oxanthrone, aloe-EMODIN, chrysophanol

(iv) various dianthrones
 - incl. emodin, aloe-EMODIN, chrysophanol, herterodianthrone
 palmidin A B C

(v) aloe-EMODIN, chrysophanol, emodin in free state