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ABSTRACT

Molecular modeling is a rapidly growing field that uses new data and techniques to control access for trading with
computational biology. To decipher the structural integrity of thermophilic amidases, an in silico approach was studied
for 14 thermostable amidases from selected different thermophiles to perform the homology modeling. Results of the
sequence based characterization showed the presence of higher glutamate and histidine in thermophilic aliphatic amidases
as compared to mesophilic aliphatic bacterial amidase and they are conserved at specific position of 205-283. Presence of
asparagine, glutamine and histidine along with cysteine in a hydrophobic core region provide more stability. These amino
acids were found to be higher in amidase from Geobacillus sp. Catalytic triad was found at various helix, which is present
in both the aliphatic amidases. These developed models have been considered for the molecular docking simulations to
identify the binding affinity of amidases with selected targets (substrates). Malonamide, lactamide and valeramide
possessed the minimum binding energy with all the thermophilic targets, which were in the range of 3 to 5 kcal.mol .
Malonamide demonstrated higher specificity as compared to rest of the docked substrates and was further used for
molecular dynamics (MD) simulations to evaluate the binding stability and conformational changes. After 1 nano second
(ns) MD study with pre-defined parameters, the structural arrangements of individual atoms have been survived at higher
temperature specifically for the Geobacillus sp.

Keywords: Computational biology, Thermophiles, Thermostable amidase, HOMOLOGY modeling, Molecular
docking, Molecular dynamics.

1. INTRODUCTION from many bacterial genera but the exploration of its

Various types of amides are present in nature and play a
very critical role in biosynthesis and degradation
processes. Nitrilases and amidases are key enzymes in
the degradation of amides like nicotinamide, acryla-
mide, benzoic acid, etc. Amidases are classified under
class EC 3.5.1 and EC 3.5.2 as aliphatic and cyclic
amidases based on the action on substrate. Various
mesophilic and thermophilic bacterial genera like
Rhodococcus, Corynebacterium, Brevibacterium, Geobacillus,
Blastobacter, Arthrobacter, Alcaligenes, Helicobacter, Lacto-
bacillus, Mycobacterium, Pseudomonas, Bacillus, Micrococcus
and  Methylophilus are reported for the amidases

production. Thermostable amidase are also reported

sequence and structural features with respect to
characteristics are scanty [1]. Due to the technology
advancements and innovations in the field of chemical,
biological and pharmaceutical industries, amidases are
applied in bioproduction and biotransformation and also
in the treatment of waste water and bioremediation as
well. Thermostable amidases have potential value for
the improvement of large scale biological processes [2].
Some of the amides showed detrimental effect on
environment and on living flora and fauna, which directs
the way to the development of unique enzyme
production or its modification from extremophilic

prokaryotes [3].
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Computational tools are now essential for in silico
analysis of enzymes like amidases, which can be
differentiated based on amino acid sequences present in
the phylogenetically unrelated bacterial families.
Moreover, the information can be used to know the
metabolic versatility for microbial mediated transfor-
mations by bacteria for example, it has been repored for
Rhodococcus sp. [4.] Many microbial amidases have been
purified and characterized. Many of the Geobacillus spp.
are reported for the production of many organic acid
using thermostable amidases [5, 6].

Online server like Expert Protein Analysis System
(ExPASy) create ease to use platform to reveal the
hidden characteristics of the protein. Physico-chemical
properties like quantification of amino acids with
composition and its molecular mass along with
theoretical pl, negatively and positively charged residues
can be calculated presciely using online tool. Atomic
composition, extinction coefficients (M'.cm™) at 280
nm, instability index/aliphatic index, grand average
hydropathicity (GRAVY), etc. can disclose the stability
and specificity of a particular protein [7]. These
properties can be either determined experimentally or
deduced from the in silico analysis of amino acid
sequences of enzyme available in the databases.
Amidases are still not adequately investigated and their
classification is not definitely formulated. Number of
amino acids involved in binding, nature of the amino
acid and its interactions with thermosolutes as well as
mutation study expands the view of thermal stability
[8,9,10].

Molecular structure and the mechanism of protein
ligand binding are very critical approach to study the
integrity and stability of the compound under various
condition. For unknown protein, 3D structure
construction and its minimum energy is necessary for
the docking study, which yield the optimum binding
position with amino acid residues. Stability and
conformation change at higher temperature are most
commonly described using molecular docking [11].
Enzyme-substrate binding and its stability study gives
modern approach to maximize the yield. In spite of
significant progress in expanding the knowledge of
amidases, the spatial organization of these proteins
remains unknown and systematic comparative analysis
of amidases are far from complete. Apart from catalytic
activity, amidases were also classified based on amino
acid sequences and phylogentic relationship [12, 13]. In

silico statistical optimization of the amidase production

are carefully studied and has provided the information
for further characterization [14, 15].

The novel approach taken is reported here with the aim
to study the general physico-chemical properties that
are true for the sequence analysis and structural analysis;
these properties of the sequences then can be used to
predict there substrate specificity, thermal stability for
the thermostable aliphatic amidases. Furthermore, the
structure and sequences based difference and evolu-
tionary changes in particular species can be revealed.

2. MATERIAL AND METHODS

2.1. Dataset

To investigate the plausible mechanism of substrate
binding specificity, physico-chemical nature and thermal
stability, 14 amidases from thermophiles were selected
from UniProtKB database. This dataset was used to
evaluate the structural insights of theomorphilic
bacterial aliphatic amidases that is as shown in Table 1.
The ligands were retrieved from Pub Chem database in
2D format and then converted in to 3D format using
Marvin suite (Fig. 1). Further, addition of hydrogen
were followed by cleaning process. For molecular
docking experiments, energy minimization was
performed using the steepest descent technique of
Amber 03 force field [16].

2.2. Sequence based analysis

Information about all the selected aliphatic amidases
from thermophilic microorganisms was obtained from
the Swiss-Prot database (UniProt). Amino acid
sequences of all retrieved amidases were checked for
having experi-mentally proved substrate specificity as
well as complete nucleotide sequences in terms of non-
fragmented, pseudo, or hypothetical sequences. The
complete nucleotide sequences for its amidase gene as
well as experimentally proved substrate specificity were
examined using various tools available in the Proteomic
server namely Prot Param, Protein calculator, Compute
pl/Mw, Prot Scale. These tools were applied to
calculate different physico-chemical properties of cyclic
amidases from the retrived protein sequences. Physico-
chemical data were generated from the Swiss Prot and
Expert Protein Analysis System (ExPASy) that is the
proteomic server of Swiss Institute of Bioinformatics
(SIB) which is ProtParam. Blastp (Protein BLAST) was
performed to study the homology among the various
amidase sequences under study and were used for

further characterization [17].
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Table 1: Selected thermophilic bacteria with the UniProt accession number for aliphatic amidases

Sr. No. Entry Microorganisms

1 Q5L060 Geobacillus kaustophilus (strain HTA426)

2 D3ESW1 Geobacillus sp. (strain Y412MC10)

3 G8N388 Geobacillu sthermoleovorans CCB_US3_UF5

4 D3ELZ1 Geobacillus sp.(strain Y412MC10)

5 U2WW35 Geobacillus kaustophilus GBlys

6 AOA023D]JT5 Geobacillus caldoxylosilyticus NBRC 107762

7 AOA023CKZ7 Geobacillus stearothermophilus NUB3621

8 AOAOEOTBAG6 Geobacillus sp. (strain Y412MC52)

9 Q9L543 Bacillus sp.

10 I3DTI3 Bacillus methanolicus MGA 3

11 R4GO0S3 Anoxybacillusﬂavithermus NBRC 109594

12 WOEAC9 Thermoanaerobacterium aotearoense SCUT27

13 AOAO85L3H5 Schleiferia thermophile str. Yellowstone

14 AOAOB3BF]9 Thermoanaerobacter sp. YS13

H,N H,C = Q N= o HyN NH,
e T T
& H,N H,N CHy HoN NH, o
Acetamide Acrylamide Butyramide Cyanoacetamide Formamide Glycinamide
i H.C
Hol 3
. HoM CH
HyN CHy HyN §OH iy 5 N, ”» 2 3
\ H,C HqC
0 CHs 0 CHy o CH, 0 &
Isobutyramide Lactamide Malonamide Methacrylamide n-methylacetamide Propionamide
H- M
~ o
>_ S W
o NH,
Thioacetamide Valeramide

Fig. 1: 2D representation of selected substrates (Ligands)

The molecular weight (kDa) of thermophilic aliphatic
amidases were calculated by the addition of average
isotopic masses of amino acid in the protein and
deducting the average isotopic mass of one water
molecule. The pl of amidases was calculated using pK
values of amino acid [18, 19]. The atomic composition
of amidases was derived using the ProtParam tool,
available at Ex PASy.

Molecular weight (kDa) is very important to study and
was calculated by taking average isotopic masses. Apart
from this, pK values were used for the calculation of

theoretical pl values of the selected thermostable

amidases. Determination of extinction coefficient of
various amidases was calculated using Equation 1 by
Edelhoch method [20].

E (Prot) = Numb (Tyr)*Ext (Tyr) + Numb (Trp)*Ext
(Trp) + Numb (Cystine)*Ext (Cystine) (1)

where, E= Extinction coefficients; Numb= Number of
amino acid residues; Ext= molar extinction coefficient
Aliphatic index, instability index and grand average of
hydropathicity (GRAVY) were estimated by ProtParam
tool [21]. Clustal W was used for multiple sequence
alignment and evaluation of phylogenetic relationships
along with importance of catalytic traid [22, 23].
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2.3. Structure based analysis

2.3.1. Homology modelling

As 3D structure of the selected proteins were not
available, FASTA sequences were used for the cons-
truction of 3D structure of the protein using SWISS-
Model [24-26]. Out of all the predicted interactive
structures, one structure was selected based on
optimum sequence identity and coverage [27].

2.3.2. Protein preparation

For the exploration of protein-ligand binding
mechanism, 14 proteins were prepared based on the
UniprotKB database and was considered for further
analysis. Three-dimensional structure of the proteins
were prepared through the YASARA energy parameters
including addition of H ions, removal of water, removal
of unwanted cofactors, ligands and metal ions. Energy
minimization was performed for the structural
evaluation with compared to natural state [28].

2.3.3. Molecular docking

Molecular docking study involves binding of two
unknown or known molecules with each other at
specific binding energy and bonds. The 14 generated
proteins were optimized using energy minimization
with chemical all-atom force field using YASARA
software and docked with selected ligands, which
demonstrated docking positions, docking energy
(kcal.mol") and root mean squared deviation (RMSD).
The best docked pose was identified with respect to the
lowest binding energy of the bound ligand [29]. The
docking energy was calculated using Equation 2 [15].
AG =A4G, + AGyy, + 4G, + 4G, + 4G,
Where, 4G, =
energy; A4G,,,, = H bonding term for docking energy;
4G,
torsional free energy term for ligand when the ligand

olv

van der Waals term for docking
= clectrostatic term for docking energy; 4G, =

transits from unbounded to bounded state; 4G =

desolv

desolvation term for docking energy.

2.3.4. Molecular dynamics simulations

To understand the reasonable mechanism of
conformation as well as stabilization, molecular
dynamics (MD) simulations was carried out on all the
14 docked receptor-ligand complexes, which require
removal of water molecules. Also, the optimization was
performed wusing (Y) AMBER force field, acid
dissociation constant (pKa), and density 0.997 g L' set
as per the YASARA Structure software to neutralize the

system and was subjected to energy minimization using
the steepest gradient approach (100 cycles). As per the
software parameters, force constant was kept at 1000
kJmol 'nm*, while number of atoms N, pressure P,
and temperature T were stored to standard level
including temperature of 298 K (physiological
condition, pH=7.4) and pressure of 1 bar using
Berendsen thermostat and [10, 26] and barostat [30]
respectively. One nano second (1 ns) time interval was
chosen for the MD simulation evaluation including root
mean squared deviation (RMSD) and root mean squared
fluctuation (RMSF) [28, 31]. The protein ligand
interaction patterns obtained from the averaged
conformations were graphically illustrated using

Discovery Studio Visualizer 2016.

3. RESULTS AND DISCUSSION
3.1. Sequence based analysis of selected
thermostable aliphatic amidases from
thermophiles
Physico-chemical characterization of all the selected
thermostable aliphatic amidases showed difference
amongst Geobacillus sp. (301-523) and other thermo-
philic species (296-323) in terms of number of amino
acids. Isoelectic point of proint plays very important
role in stability and substrate specificity so the
theoretical pl using online tool was calculated, which
showed 9.18 for Anoxybacillus flavithermus NBRC 109594
and 9.07 for Schleiferia thermophile str. Yellowstone
posses that was higher in comparison to the rest.
Instability index of aliphatic amidases from Geobacillus
sp. (strain Y412MC10), Anoxybacillus flavithermus NBRC
109594, and Schleiferia thermophile str. Yellowstone is
higher than 40, which proved less stability in in vitro
condition. Apart from this, Thermoanaerobacter sp. YS13
and Bacillus sp. showed maximum and minimum volume
occupied by site chains. Based on these results
Thermoanaerobacter sp. YS13 is having more thermal
stability than the other amidases studied (Table 2).
Results of amino acid analysis of selected thermostable
aliphatic amidases are shown in Table 3.
The comparison of the amino acid composition of the
aliphatic amidases revealed that in most of the Geobacillus
sp. alanine (Ala), glycine (Gly), proline (Pro) were
found to be higher than the rest of the thermophiles.
Moreover, Lysine (Lys) and Tyrosine (Tyr) in the
studied selected thermophiles except Geobacillus sp.
were two fold higher. Anoxybacillus flavithermus NBRC
109594 showed significant difference that is three fold
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less Alanine (Aln) and two fold higher Lysine (Lys).
Isolucine (Ile), Lucine (Leu), Lysine (Lys), Aspartate

(Asp) and Tyrosine (Tyr) were signiﬁcantly higher in

Thermoanaerobacter sp. YS13 as compared to the rest.

Table 2: Physico-chemical characterization of selected thermostable aliphatic amidases

Properties 1 ; 3 4 5 6 7 3 9 10 T 12 13 1*
No. of ami
© 0,3“““ 84503 34 3¢ 43 4% 301 434 M8 M9 3D %0 296 369
acas
MW 466714 563758 466714 363823 466714 465253 32779.3 466365 38597 391274 370174 398909 349858 407473
Theoitilpl 56 5.16 5.6 578 56 527 506 551 543 554 918 57 907 7.3
Total - resid
oml-readie 4 64 48 39 48 50 3 9 8547 34 51 39 45
(Asp—Glu;
—
Total ¥ residue 0 4 38 3 38 36 18 38 36 37 45 £ 4 4
(ArgtLys)
Extinction co-
“;: é’m 27890 48820 27890 46535 27890 24910 18575 27890 57340 58830 36245 34755 60405 33935
eff. Cys
Extinction co-
VICIORE 27390 48320 27390 46410 27390 24410 18450 27390 56340 38830 35870 34380 60280 33810
eff. Cys reduced
sublityindex 2778 3444 2778 4162 2178 258+ 316 2625 302 3037 4454 3228 4567 2001
Alphatichdex 8915 88.8 8945 7533 89.45 9028 10029 935 7457 7506 §336 S+ 7153 108.36
GRAVY  -0.078 0161 -0078  -024 0078 -0027 0163 0077 -0324 -0398 0662 -0205 072 -0012

Table 3: Comparative investigation of amino acid composition of thermostable aliphatic amidases

Microorganisrn

1 2 3 4 5 6

7 8 9 10 11 12 13 14

Ala(A) 74 96 74 66 714 18

6.6 74 83 6.6 3.1 7.5 8.1 5.7

Arg(R) 44 36 44 42 44 39

1.3 44 37 46 3.1 3.3 7.1 3.3

Asn(N) 41 38 41 1.8 41 39

3.3 3.9 4.6 4.9 7.1 3.6 4.4 7

Asp (D) 5.1 59 51 4.8 5.1 5.3

4 53 5.2 5.7 43 7.8 47 73

Cys (O) 1.8 0.2 1.8 0.6 1.8 1.8

1 1.8 23 2.6 1.9 1.7 0.7 0.8

Gln(Q) 32 27 32 33 32 35

4.3 3.2 3.2 2.9 7.1 2.5 4.7 1.1

Glu(E) 6 63 6 69 6 6.2

7 6.2 7.8 7.7 6.2 6.4 84 49

Gly(G) 10.8 88 10.8 10.5 10.8 11.1

9.6 10.8 938 9.5 6.5 7.8 47 9.2

His (H) 2.5 2.5 25 33 25 25

3.7 25 23 2.9 3.4 3.1 3 0.3

e 74 65 74 39 74 16

96 7.6 7.8 8.3 8 7.8 64 11.9

Leu(L)y 69 84 69 93 69 6.7

8 6.9 43 4.6 8.7 6.1 9.1 9.2

Lys(K) 44 5 44 51 44 44

47 44 6.6 6

10.8 8.3 84 9.2

Met M) 2.5 19 25 51 25 25

277 25 3.7 3.4 0.9 4.2 1.7 2.7

Phe (F) 3.2 3.4 32 45 32 3.7

4 3.2 3.2 2.9 3.1 3.1 3.7 2.7

Pro(P) 69 69 69 66 69 67

6.6 69 43 4.6 5 3.9 3.7 24

Ser S) 3.2 7.1 32 54 32 25

5 3.2 4 4.3 4 5 4.1 54

Thr (T) 8.1 59 8.1 7.8 8.1 8.1

7 8.1 6 5.7 6.5 5 47 43

Trp(W) 05 08 05 18 05 05

0.7 0.5 1.7 1.7 0.9 0.8 1.7 0.3

Tyr (Y) 2.5 34 25 27 25 21

1.7 25 46 4.9 4 3.3 74 5.1

Val (V) 9 7.3 9 6 9 9.2

9.3 8.8 6.6 6.3 5.3 8.9 3 7

As shown in Fig. 2, the multiple sequence alignment of
the aliphatic amidases under study showed some unique
differences for the position specific presence of some
amino acids. The present work has contributed to
conclude that there is a clear difference between

selected aliphatic amidases in terms of position specific

presence of certain amino acids. Position of amino acid
glycine (57, 63, 95, 96, 158, 360, 405, 410, 442, 455),
proline (62, 312), glutamate (66, 102, 131, 337, 412),
histidine (68, 70, 203, 260), lysine (163, 404) and
arginine (314) are conserved in the selected aliphatic

amidases. Amino acid histidine and tyrosine at position
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Aspartate (Asp), valaine (Val), glutamine (Glu) and
isolucine (llu) were position specific
conserved amino acid in all selected thermostable
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and most position specific amino acid substitution were no

amidases. No conserved regions were found at C and N them.

CLUSTAL O{1.2.4) multiple segquence alignment
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terminal of the sequences. Catalytic triad (KAP) was
observed amongst selcected thermophiles and many

ted

which leads to the evolutionary relationship between
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Fig. 2: Multiple sequence alignment of the amino acid sequences of the selected thermostable aliphatic
amidases
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3.2. Homology modeling

Homology modelling using SWISS-MODEL predicts
and suggest various 3D model for the selected sequences
based on template structure, identification and align-
ment. Evaluation and selection of the optimum model
for the docking purpose were carried out using Global
Model Quality Estimation (GMQE) score, coverage and
sequence identity. The high value of the GMQE score
proved a more reliable model among other proposed
models. Based on which the single best model was
chosen for each protein and selected models are
presented in Fig. 3.

3.3. Molecular docking

The binding modes of receptor—ligand complexes were

implemented to illuminate molecular docking. The 14
receptors and 14 thermostable amidases were docked
with each other. Data presented in Table 4 shows the
best binding of all the docked ligands with proteins, in
which malanomide ligand remained in top three docked
ligand. The binding energy, hydrogen bonding and
contacting residues are listed in Table 5. Malanomide
docked with Geobacillus stearothermophilus NUB3621 at
5.098 kcal.mol binding energy, which was the best in
all the docked proteins. In addition, 5 hydrogen bonds
were formed between malanomide and Geobacillus
stearothermophilus NUB3621 protein, and Cys 36, Phe
37, Asn 57, Asn 154, Asp 156, Asp 181, His 183, Glu
190, Val 193, Ser 194, Gly 195, Glu 197, Val 276, Asp
277 were found as contacting amino acids residues.

PR AOAOEOTBAG
X ¥

w.\uﬂmm

N x
RPN A0A023DJTS

o

e
> @BV
-\

7

R

Fig. 3: 3D structure of selected thermostable aliphatic amidases by Homology Modelling

Table 4: Docked ligands with proteins analyzed through molecular docking

Prot AO0A023 AOAO02  AOAO08

eins CKZ7 3DJT5  5L3H5  3BFJ9 TBA6

AOAOB AOAOEO D3E
8W1 Lz1 388 TI3 060 543 0S3 W35

D3E G8N I3D Q5L Q9L R4G U2W

9 9 14 8 9 9 9 9 9 9 9 9 9
8 14 10 14 14 14 14 8 14 14 14 10 8
6 7 9 9 8 4 4 10 10 8 8 3 10
14 8 3 3 3 8 8 7 8 10 4 8 4
4 10 7 7 4 7 7 14 4 7 10 7 7
" 7 3 8 10 12 10 10 12 7 3 2 14 14
g 3 4 12 2 10 3 3 4 11 4 7 4 3
E‘) 10 6 2 4 7 6 6 3 12 6 3 12 12
2 2 4 12 2 12 12 2 2 2 6 2 2
12 12 11 6 6 2 2 6 3 12 12 6 6
1 11 6 1 1 1 1 1 6 1 11 11 11
13 1 1 11 11 11 11 11 5 11 1 1 1
11 13 5 13 13 13 13 13 1 13 5 13 13
5 5 13 5 5 5 5 5 13 5 13 5 5
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Table 5: Docking score, binding energy, hydrogen bonds, dissociation constant, and contacting

receptor of Malanomide ligand with all selected proteins

: Binding Energy . .
Protein (kcal ‘mol] Hydrogen bonds Contacting receptor residues
Gly 89, Thr 106, Gly 107, Gly 131, Ser 132, Gly 135, Pro
AOAOB3BF]9 4.325 Gly 89, Gly 107 136, Met 138, Pro 269, Ile 272, Phe 273, Gly 295, Lys 296,
Ile 299
Cys 41, Ile 83, Thr ~ Pro 39, Gly 40, Cys 41, Trp 42, Gly 43, Pro 44, Ile 83, Ala
AOADEOTBAG 4801 85, Ser 86 84, Thr 85, Ser 86, Asp 293, Val 294, Ser 295
Asn 57, Asn 154, Cys 36, Phe 37, Asn 57, Asn 154, Asp 156, Asp 181, His
AOA023CKZ7 5.098 Asp 156, Asp 181, 183, Glu 190, Val 193, Ser 194, Gly 195, Glu 197, Val 276,
His 183 Asp 277
Cys 41, Met 45, Ala Gly 40, Cys 41, Trp 42, Gly 43, Pro 44, Met 45, Ala 84,
A0AD23DJTS 437 84, Asp 293 Thr 85, Ser 86, Asp 293, Val 294, Ala 295
AOAO085L3H5 3.859 Glu ‘;2;1;}112 109" 11e 37, Glu 40, Glu 41, Thr 44, Phe 109, Arg 110, Ser 113
Glu 326, Lys 328
’ ’ Glu 326, Leu 327, Lys 328, Gln 329, Phe 331, Arg 356,
D3ESWI 342 Gln 329, Arg 356, Glu 357, Gly 360, Phe 361, Lys 365
Lys 365
Gly 58, Arg 71, Lys Glu 326, Leu 327, Lys 328, GIn 329, Phe 331, Arg 356,
D3ELZI 4342 84, Gly 87 Glu 357, Gly 360, Phe 361, Lys 365
GSN388 4,824 Cys 41, Thr 85, Ser ~ Pro 39, Gly 40, Cys 41, Trp 42, Gly 43, Pro 44, lle 83, Ala
86, Ile 83, Asp 293 84, Thr 85, Ser 86, Asp 293, Val 294, Ser 295
BDTI3 4.124 Leu 25, Met 66, Pro 23, Arg 24, Leu 25, His 26, Gly 64, lle 65, Met 66, Tyr
Asp 68, Glu 71 67, Asp 68, Glu 71, Asp 224
Arg 214, Gln 242, Pro 212, Arg 214, Pro 215, Pro 217, Gln 242, Asp 245,
Q5L060 4.439 Asp 245, Leu 349, Arg 246, Lys 267, Leu 349, Glu 350, Leu 353, Pro 354, Ile
Leu 353 355
. Arg 188, Gln 190, Gln 200, Ile 201, Ala 204, Lys 205, Val
QIL>43 574 His 232 217, Phe 230, His 232, Ser 233, Ala 234, Ile 236, Glu 245
R4GOS3 4.165 His 39, His 40, Tyr  Ile 38, His 39, His 40, Leu 42, Ile 63, Tyr 65, His 137, Asn
65, Gln 147 138, Lys 146, Gln 147, Cys 148, Pro 149
Cys 41, Ile 83, Thr ~ Pro 39, Gly 40, Cys 41, Trp 42, Gly 43, Pro 44, lle 83, Ala
LU2ZWW35 4.807 85, Ser 86, Asp 293 84, Thr 85, Ser 86, Asp 293, Val 294, Ser 295
Asp 45, Glu 79, . .
WOEAC9 4.668 Glu 80, Gly 307, His 34, Asp 45, Glu 79, Glu 80, Ala 87, Met 88, His 143,

His 308, His 332

GIn 146, Pro 306, Gly 307, His 308, His 332

The docked positions of malaonomide and Geobacillus
stearothermophilus NUB3621 protein with 2D interaction
profiles is shown in Fig. 4. On the basis of the results,
the generation of hydrogen bonds fluctuated in protein
binding while some van der Waals and unfavorable
donor-donor as well as unfavorable acceptor-acceptor
were also detected. So, these may be the responsible
factors for the possible binding.

3.4. Molecular dynamics simulations
The

conformation of receptor—ligand complexes were seen

binding affinity and occurred in

changes

in the molecular dynamics simulations. For the MD

simulations analysis, standard physiological conditions

were maintained according to the Yasara software. All
the 14 receptor-ligand complexes were kept for 1 ns
time period to decipher the molecular dynamics
simulation evaluation. To understand this study, Time
vs. Energy and Time vs. RMSD graph plots were taken,
which revealed the exact mechanism of these selected
ligands against proteins. AOAO85L3H5 and W9EAC9
proteins remained separated with respect to other
proteins that usually ranged from -340000 kcal.mol ' to
-190000 kcal.mol™" based on the software algorithm,
RMSD of all
fluctuations at simultaneous

while complexes
MD

interval (Fig. 5). On the basis of these results, it is easily

showed higher

simulations time

recognized that all ligands possessed similar stability and
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changed in their conformation except AOAO85L3HS5 and
WOIEACY protein. Moreover, to understand this in
detail, protein-ligand interaction maps were generated
using Accelrys Discovery studio visualizer 2016 that
showed that dominance of hydrogen bonds were the
major anchoring sites for ligand binding and these
bonds had diverse pattern in their
combination with protein complexes. AOAOB3BF]9,

hydrogen

b
Pl

/

S

AOAOEOTBAG
=N

4
2
\' : AOAOSSL3HS A\
N\
' ‘ NOXL
b7 2l

13DT13

TeAs OO
» e

125

D3E8W1, D3ELZ1, Q5L060, Q9L543, R4G0S3, and
U2WW35 protein-ligand complexes described massive
change in their conformation (Fig. 6), which clarified
the changes occurred in their structural conformation.
The selected protein—ligand complex was used in
receptor-based superposition to study the collaboration
of dock poses, which showed the potential binding

against native structured receptors.
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4
\y
‘
. W o A
)

Fig. 4: Dock pose of docked ligands with selected proteins
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Fig. 5: Energy and RMSD plots produced from MD trajectories of prioritized targets
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Fig. 6: The protein-ligand interaction maps developed from molecular dynamics (MD) conformations

4. CONCLUSION

Aliphatic amidase plays very crucial role in the
metabolism in all the living creature especially in the
microorganisms. Thermophiles show the best amidase
activity at higher temperature, which prompt scientific
community to explore the nature of aliphatic amidases,
with respect to based
correlation with substrate specificity and thermo
stability.

A number of physico-chemical characteristics and

structural and sequence

sequence analysis of thermostable aliphatic amidases
have been calculated for total number of amino acid,
molecular weights and composition of amino acids,
which clearly stated the presence of Glu, Leu, Ile and
Ala amino acid and its location that is responsible for
thermo stability. This study has found difference
between various thermophiles in conserved amino acid
residues at several positions. Glutamine is significantly
different and plays important role in enantioselectivity.
The results of the present work will be quite useful in
prediction and selection of thermostable aliphatic
amidases or from the large number of sequenced
microbial genomes. The docking studies conducted
revealed that among all the selected substrates,
malaonomide showed the best binding affinity towards
all the chosen proteins. Molecular dynamics simulation
study showed the thermal stability of amidase reported
from Geobacillus stearothermophilus NUB3621 that was
confirmed by RMSD, which in turn depended on

structural arrangements and interactions of all atoms. In

addition, more fluctuation were observed at 1 ns time
trajectory so more time interval will be the next step to
perceive the higher level structural integrity.
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