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ABSTRACT 
Solanum nigrum (SN) has been widely used in traditional folk medicine to cancer treatments, but the defined target is not 
clear. To identify the potent targets for the treatment of HCC using various strategies, 23 active compounds were 
collected by IMPPAT and TCMSP databases based on their DL and ADME properties. PharmMapper, SEA, STITCH and 
DRAR-CPI followed to CTD and PHARMGKB were used for target fishing. 25 targets were retrieved to analyze 
GeneMANIA and DAVID. Cytoscape 3.6.1 was used for the network’s constructions compound-target, target-pathway, 
compound-target-pathway and target organ networks were developed. For target validation, molecular docking GLIDE, 
AutoDock Vina and iGEMDOCK were used. Majorly, 21 targets were located in the liver, are considered as primary 
targets for in silico docking. The study concludes 5 potent targets and 4 active compounds via 4 signaling pathways 
involving HCC metabolism. SN could be potentially beneficial in treating HCC.    
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1. INTRODUCTION  
Hepatocellular carcinoma (HCC) is one of the leading 
cancers cause worldwide. Development of HCC 
includes many risk factors such as hepatitis B virus, 
hepatitis C virus, non-alcoholic fatty liver disease, 
alcohol consumption and diabetes. Metastasis of HCC is 
the major threatening that causes many deaths. Recent 
research is focused to find potent targets for treating 
HCC. Target therapy is the advancement in this field, 
yet there is a limitation in success rates due to multidrug 
resistance. It’s an urgent need to discover effective 
targets for the treatment of HCC [1, 2]. 
Solanum nigrum Linn (SN) is Solanaceae family a common 
plant found throughout India, which is traditionally used 
for folk medicine to treat various purpose including 
pain, inflammation, fever, asthma, cough, ulcer wound, 
skin diseases, leprosy, hemorrhoids, dropsy, liver 
disorders, hepatoprotective agent, anticancer, 
antioxidant, neuroprotective, cytoprotective and 
antimicrobial [3,4]. SN is believed in Chinese traditional 
medicine to treat many types of cancer such as liver 
cancer, lung cancer, breast cancer, stomach cancer, 

bladder cancer and colon cancer [5]. SN reported with 
different chemical constituents, which was involved in 
medicinal properties, secondary metabolites like 
alkaloids, saponins, steroid, glycoprotein, flavonoids, 
saponins, tannins, glycosides, carbohydrates, proteins, 
phytosterol and Coumarins [6]. The presence of 
Quercetin in SN involved cancer prevention. It is a 
natural flavonoid found in plants, has been extensively 
used for its biological activities includes malignant cells 
growth in leukemia, breast, hepatic, ovarian, colorectal, 
gastric and endometrial cancers. It controls cancer cell 
growth by regulating specific pathways [7]. Studies 
reported in SN using animal models could be used to 
predict the pathway and targets were involved in cancer 
proliferation. AKR1B10 is generally, expressed in a 
normal condition in the colon, small intestine and liver. 
In carcinogenic cases, the level of AKR1B10 was 
elevated through the regulation of fatty acid synthesis 
and reactive carbonyls by AKR1B10 detoxification to 
enhance the growth and proliferation of cancer cells and 
overexpressed in Hepatocellular carcinoma (HCC) also 
involved in various cancer such as pancreatic cancer, 
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breast cancer and lung cancer [8]. Still, the specific 
individual compounds or targets involving in the HCC 
prevention are unclear maybe it could have a synergistic 
effect against HCC. We use network pharmacology to 
identifying potential targets and components via 
multiple signal pathways. This is the reason why we 
apply the computational approach construct network 
pathway and discover the effective components in SN 
against HCC. 
Network pharmacology is a powerful tool to analyze the 
massive biological data. It deals with the multidrug-
multitarget approach with a wide verity of diseases that 
provides knowledge about the effects and side effects of 
drugs.  Also, it serves to document and analyze the 
clinical prescriptions of traditional medicine 
practitioners [9]. Improved in silico approaches can 
accelerate the drug discovery process through predict 
the pharmacokinetic model, metabolic and toxicity 
functions [10]. 
In the present study, we develop a network 
pharmacology approach to identify the active 
components and targets of SN against HCC through 
computational screening by evaluating their ADME 
properties and drug-likeness (DL) using IMPPAT and 
TCMSP server, potential targets further chose by an 
inverse docking method using PharmMapper, SEA, 
STITCH, DRAR-CPI and target mining for CTD and 
PHARMGKB. Target's genes were submitted to 
GeneMANIA and DAVID webservers to know the gene 
functions and pathways. The pharmacological data were 
integrated into four networks, compound-target, 
target-pathway, compound-target-pathway and target 
organ. This systematic overview of the network 
pathway provides potential targets and mechanisms of 
action in SN against HCC. Further, the progress 
validated through in silico molecular docking to find out 
the potent targets for the treatment of HCC using 
GLIDE v2017, Auto Dock Vina and iGEMDOCK v2.1. 
 
2. MATERIAL AND METHODS  
2.1. Compound selection 
SN compounds were collected through Indian and 
Chinese traditional medicinal databases such as Indian 
Medicinal Plants, Phytochemistry And Therapeutics 
(IMPPAT) (https://cb.imsc.res.in/imppat/home) and 
the traditional Chinese medicine systems pharmacology 
database and analysis platform (TCMSP) 
(http://ibts.hkbu.edu.hk/LSP/tcmsp.php).  
The compound was chosen based on the physiochemical 
properties, molecular descriptors, drug-likeness (DL), 

oral bioavailability (OB) and Tanimoto coefficient (DL 
≥ 0.18) [11]. 
 
2.2. Computational Target Fishing and Data 

Mining 
All selected compounds from SN structural data were 
retrieved from the Pub chem (https://pubchem.ncbi 
.nlm.nih.gov/) and IMPPAT. Active components were 
identified and compared with PharmMapper 
(lilab.ecust.edu.cn) [12], the Similarity Ensemble 
Approach (SEA), (http://sea.bkslab.org/) [13]. 
STITCH (http://stitch.embl.de/) [14] and Drug 
Repositioning and Adverse Reaction via Chemical-
Protein Interactome (DRAR-CPI), (http://cpi.bio-
x.cn/drar/) [15]. It automatically identifies the best 
mapping poses of query molecules the database 
annotated with p-value including the database like 
Target Bank, Binding DB, potential drug target 
databases and Drug Bank. Further, Comparative 
Toxicogenomic Database (CTD), (http://ctdbase.org/) 
and Pharmacogenomics knowledge (PHARMGKB), 
(http://www.pharmgkb.org) [16] were applied for 
target mining process. 
 
2.3. GeneMANIA analysis 
GeneMANIA (https://genemania.org) is a web-based 
server that provides information about gene lists, 
associated genes link and gene functional assays [17]. 
This server is a reliableweb interface, searching for the 
organism has changed to the homo sapiens, genes name 
was entered into the search bar to predict. The output 
files were retrieved. 
 
2.4. Analysis of Gene Ontology (GO)   
The targets gene of SN were performed by GO 
enrichment analysis using the Database for Annotation, 
Visualization and Integrated Discovery 6.8 server 
(DAVID), (http://david.abcc.ncifcrf.gov) is employed 
in the network biology were consolidated biological 
process information, it is used as analytical tools to 
identify the gene or proteins in systematically. Go and 
KEGG pathway information was collected based on the 
p-value of less than 0.05 [18]. 
 
2.5. Network/ Pathway Construction 
To investigate relationships between the active 
ingredients of SN and HCC, we constructed four 
visualized networks namely, Compound Target 
network (C-T), Target Pathway network (T-P), 
Compound-Target-Pathway network (CTP) and Target-
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Organ (T-O) network using Cytoscape 3.6.1. 
Cytoscape is a useful bioinformatics tool to visualize 
biological networks and data integration. The platform 
work with additional plugins like Network Analyzer and 
CentiScaPe 1.2 was installed from the Cytoscape app 
store. The metabolism pathway information further 
mapping through the KEGG database (Kyoto 
Encyclopedia of Genes and Genomes), 
(http://www.genome.jp/kegg/). Targets and location 
tissue were identified using BioGPS bank (http:// 
biogps.org) [19]. 
 
2.6. In silico molecular docking validation 
In silico docking is an efficient work field to identify the 
interaction between the compound and target proteins. 
The active compounds of SN and their potential targets 
were docked using Schrodinger- GLIDE v.2017, Auto 
Dock Vina and iGEMDOCKv2.1. Compounds 
structures were collected from PubChem and the target 
proteins were retrieved from the Protein Data Bank 
(PDB) (https://www.rcsb.org/) used as ligand and 
targets, respectively for the molecular docking. 
Standard drug Sorafenib tosylate was used for the 
comparison [20]. 
 

3. RESULTS 
3.1. Screening for active compounds 
SN structural data were achieved from IMPPAT and 
TCMSP database, which resulted in 46 and 39 
compounds, respectively. Common compounds of 
which were eliminated and gained 78 potential bioactive 
candidates.  The resulted inactive compounds were 
followed Lipinski’s rule of five and DL index≥ 0.18 on 
further, analysis. Finally, 23 active compounds were 
selected for further investigation (Table 1). 
 
3.2. Drug-Target prediction 
The 23 pharmacophores of SN were used to predict the 
potential targets by PharmMapper, SEA, STITCH, and 
DRAR-CP.  SEA measures a similar reference target. 
For each reference, target SEA measures the similarity 
between the query compound and each reference 
compound and sums these numbers in Tanimoto 
Coefficients between ECFP4 fingerprints. To quantify 
the significance of this sum, SEA compares it to a 
background model fit with simulated targets made with 
compounds sampled at random from ChEMBL. Based 
on the disease specificity, 25 targets were mined by 
CTD and PHARMGKB (Table 2). 
 

Table 1: Bioactive compounds and ADME 
properties of SN 

No Name OB (%) DL 

C01 Syringaresinol 3.29 0.72 

C02 2,4-Dihydroxycinnamic acid 0.56 0.596 

C03 2-Amino-4,8-
naphthalenedisulfonic acid 

0.11 0.52 

C04 2-Aminohexanedioic acid 0.56 0.394 

C05 Beta-D-xylopyranose 0.55 0.295 

C06 D-Galactose 0.55 0.29 

C07 Flavylium perchlorate 0.55 0.53 

C08 Hirsutrin 1.86 0.77 

C09 Hyperin 6.94 0.77 

C10 I-ascorbic acid 0.56 0.36 

C11 lignoceric acid 14.90 0.33 

C12 Medioresinol 0.55 0.81 

C13 Nicotinamide 0.55 0.55 

C14 Pinoresinol 4.25 0.52 

C15 Pterosin B glucoside 16.07 0.46 

C16 Quercetin 46.43 0.28 

C17 Quercetin-3-gentiobioside 3.45 0.64 

C18 Scopoletin 0.55 0.54 

C19 Sitosterol 36.91 0.75 

C20 Solanaviol 15.63 0.44 

C21 Solatubin 17.12 0.76 

C22 Tigogenin 14.09 0.81 

C23 Tomatidenol 10.68 0.81 

 
3.3. Analysis by GeneMANIA 
Target genes (25) were input into the GeneMANIA to 
predict the pathway information, shared protein 
domains, localization, and genetic interactions. Overall, 
outputs showed a total of 45 genes and established 306 
links. 60.45% of target genes displayed co-expression, 
22.94% co-localization, 9.81% shared protein domains, 
3.42% genetic interactions and 3.38% involved in 
pathway 3.38% (Fig. 1). 
 
3.4. GO enrichment analysis for targets 
The resulted target genes of HCC were used for GO 
enrichment analysis by DAVID. The interaction 
network was categorized in the Benjamini-Hochberg 
method (p< 0.05). Targets were involved in the 
biological process (BP, 63%), molecular function (MF, 
21%), and cellular component (CC, 16%) respectively 
(Fig. 2). 
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Table 2: Putative targets information of SN 

ID PDB ID Gene name Target 

T01 4D1N NOS1 Nitric oxide synthase 1 

T02 1ZUA AKR1B10 Aldo-keto reductase family 1-member B10 

T03 1YUC NR0B2 Nuclear receptor subfamily 0 group B member 2 

T04 2FLU NFE2L2 Nuclear factor erythroid 2-related factor 2 

T05 4H1S NT5E 5'-nucleotidase 

T06 2PEI GCLC Glutamate-cysteine ligase catalytic subunit 

T07 1C9Y OTC Ornithine carbamoyl transferase, mitochondrial 

T08 1BAS FGF2 Fibroblast growth factor 2 

T09 1M7M ADA Adenosine deaminase 

T10 1E3G AR Androgen receptor 

T11 1BJ1 VEGFA Vascular endothelial growth factor A 

T12 1IAR IL 4 Interleukin 4 

T13 1BJX P4HB Protein disulfide-isomerase 

T14 3PM0 CYP1B1 Cytochrome P450 1B1 

T15 5O0X NOX4 NADPH oxidase 4 

T16 5C65 SLC22A8 Solute carrier family 22 member 8 

T17 1I7G PPARA Peroxisome proliferator-activated receptor alpha 

T18 4QUV DHCR7 7-dehydrocholesterol reductase 

T19 1Z10 CYP2A6 Cytochrome P450 2A6 

T20 1E6F IGF2R Cation-independent mannose-6-phosphate receptor 

T21 5NJ3 ABCG2 ATP-binding cassette sub-family G member 2 

T22 3MBG GFER FAD-linked sulfhydryl oxidase ALR 

T23 2C17 CYP17A1 Steroid 17-alpha-hydroxylase/17,20 lyase 

T24 3GKH NPC1 Niemann-Pick C1 protein 

T25 2VDX SERPINA6 Corticosteroid-binding globulin 

 

 
 

Fig. 1: A network analysis of potential targets using GeneMANIA.  
Black nodes: target proteins; Grey circles: genes associated with query genes; Coloured lines: interactions 

https://www.ebi.ac.uk/pdbe-srv/view/entry/4D1N
http://zinc15.docking.org/genes/ERN1
http://zinc15.docking.org/genes/AKR1B10
http://zinc15.docking.org/genes/NR0B2
http://zinc15.docking.org/genes/NFE2L2
http://zinc15.docking.org/genes/NT5E
http://zinc15.docking.org/genes/GCLC
http://zinc15.docking.org/genes/OTC
http://zinc15.docking.org/genes/FGF2
http://zinc15.docking.org/genes/ADA
http://zinc15.docking.org/genes/P4HB
http://zinc15.docking.org/genes/CYP1B1
http://zinc15.docking.org/genes/NOX4
http://zinc15.docking.org/genes/SLC22A8
http://zinc15.docking.org/genes/PPARA
http://www.pdb.org/pdb/explore/explore.do?structureId=4quv
http://zinc15.docking.org/genes/DHCR7
http://zinc15.docking.org/genes/CYP2A6
http://zinc15.docking.org/genes/IGF2R
http://zinc15.docking.org/genes/ABCG2
http://zinc15.docking.org/genes/GFER
http://zinc15.docking.org/genes/CYP17A1
http://zinc15.docking.org/genes/NPC1
http://zinc15.docking.org/genes/SERPINA6
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Fig. 2: Go enrichment analysis of the SN targets (A) Biological process; (B) Molecular function; 

 (C) Cellular component; (D) Go analysis percentage chart  
 

The top five biologicalprocessesare categorized post-
embryonic development, cholesterol metabolic process, 
transport, cellular response to hydrogen peroxide and a 
glucose stimulus. KEGG pathways resulted in bile 
secretion, metabolic pathways, and arginine 
biosynthesis. 
 
3.5. GO enrichment analysis for targets 
3.5.1. Compound-Target (C-T) Network 
System pharmacology wasassociated with signaling 
pathways to produce the pharmacodynamics model. It 
helps to visualize and interpret the interaction between 
active compounds and their targets. The construction of 
the C-T network provides the topological relationship 
of the compound and targets (Fig. 3). C-T network 
shows 60 interactions between 23 compounds and 25 
targets. Compound C05, C10, C20, C21, C23, did not 
interact with any active targets. As the example of 
compound Quercetin (C16, degree 5), it has already 
been proved to treat cancer and synergistic effects in 
chemotherapy, This screening methods helps to identify 
the potential active compounds from SN related to 
HCC. 
 
3.5.2. Target-Pathway (T-P) Network 
The 25 potential targets of SN interact with 96 KEGG 
pathways and the T-P network was generated (Figure 
4). The major pathwayswere related to carcinogenesis, 
fluid shear stress and atherosclerosis, hepatocellular  

carcinoma, metabolic pathways, metabolism of 
xenobiotics by cytochrome P450, microRNAs in 
cancer, ovarian steroidogenesis, pathways in cancer, 
protein processing in the endoplasmic reticulum, PI3K-
Akt signaling pathway, steroid hormone biosynthesis 
andtryptophan metabolism. 
 

 
 

Fig.3: Compound-Target (C-T) network 
Blue circle: Active compounds; Red inverted triangle: target proteins; 
Grey edges: interaction between compound and protein 

http://dict.youdao.com/w/chemotherapy/#keyfrom=E2Ctranslation
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Fig. 4: Target-Pathway (T-P) network 
Red inverted triangle: target proteins; Cyan square: Pathway; Grey 
edge: interaction between targets and pathway 
 
3.5.3. Compound-Target-Pathway (CTP) Network 
The compound-target-pathway interaction networks 
consisted of 148 nodes corresponding to 23 compounds 
and its targets, pathways in 215 edges (Fig.5). 
 

 
 

Fig. 5: Compound-Target-Pathway (CTP) 
network 

Blue circle: Active compounds; Red inverted triangle: target proteins; 
Cyan square: Pathway; Grey edge: interaction between compound, 
targets, and pathway 

NOS1, AKR1B10, NT5E, GCLC, OTC, FGF2, 
DHCR7, CYP2A6 and CYP17A1exhibited more 
connections with a metabolic pathway (degree=9) and 
NFE2L2, FGF2, AR, VEGFA and IL 4 involved 
pathways in cancer (degree=5). Compounds of SN 
associated with targets in HCC were majorly involved in 
PPAR, calcium, the PI3K-Akt, FGFR, VEGFand MAPK 
signaling pathways (Fig. 6), consistent with the SN 
compounds regulating various cancerous pathways such 
as breast cancer, gastric cancer, prostate cancer, 
pancreatic cancer and bladder cancer. 

 
3.5.4. Target-Organ (T-O) Network Analysis 
System-level detection of organ or tissue location 
helped to understand the HCC progression and 
development. The expression pattern and location of 25 
targets were identified using BioGPS datasets. The 
Target Organ (T-O) network consisted of 109 nodes 
and 1309 edges corresponding to targets and organs 
(Fig. 7). The targets were connected with 84 different 
organs and tissues. 
Specifically, 21 targets presented in the liver accounting 
for 84% of all the targets. These are the primary targets 
(Table 3) likely to be applied to the HCC treatment. 15 
targets wereoverexpressed in the colon, 13 targets in 
the kidney, the pancreas, the uterus and 11 targets in 
the Uterus corpus. 18 targets were located in a white 
blood cell.Thismay involve in the pathological process 
of metastatic cancer as a bridge with various organs. 
Especially, targets NPC1, SLC22A8, P4HB, CYP2A6, 
DHCR7, PPARA, VEGFA, CY1B1, IL4 and IGF2R 
locatedat more than 80 organs. Therefore, cancer in the 
liver can spread intoreciprocally the other organs via the 
bloodstreamin the body 

 
3.6. In silico validation-Molecular docking 
Molecular docking was used to identify the interactions 
of 18 natural compounds of SN against 21 HCC 
targets.For the careful selection of targets, various 
ligand-protein docking programs were used such as 
GLIDE, AutoDock Vina and iGEMDOCK. Standard 
drug Sorafenib tosylate was used for the comparison 
study (Figure 8, Table 4), interactions of proteins and 
ligands were documented. These in silico studies 
revealed 5 potent targets from 25 proteins and 4 active 
compounds from 23 compounds of SN for the effective 
treatment of HCC. 

http://zinc15.docking.org/genes/ERN1
http://zinc15.docking.org/genes/AKR1B10
http://zinc15.docking.org/genes/NT5E
http://zinc15.docking.org/genes/GCLC
http://zinc15.docking.org/genes/OTC
http://zinc15.docking.org/genes/FGF2
http://zinc15.docking.org/genes/DHCR7
http://zinc15.docking.org/genes/CYP2A6
http://zinc15.docking.org/genes/CYP17A1
http://zinc15.docking.org/genes/NFE2L2
http://zinc15.docking.org/genes/FGF2
http://zinc15.docking.org/genes/FGF2
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Fig. 6: Distribution of SN targets on the HCC compressed pathway 
Cyan square: Relevant pathway 

 
Table 3: Suggested targets for the treatment of HCC 

ID Gene name PDB ID Targets 

T01 NOS1 4D1N Nitric oxide synthase 1 

T02 AKR1B10 1ZUA Aldo-keto reductase family 1-member B10 

T03 NR0B2 1YUC Nuclear receptor subfamily 0 group B member 2 

T07 OTC 1C9Y Ornithine carbamoyltransferase, mitochondrial 

T08 FGF2 1BAS Fibroblast growth factor 2 

T09 ADA 1M7M Adenosine deaminase 

T10 AR 1E3G Androgen receptor 

T11 VEGFA 1BJ1 Vascular endothelial growth factor A 

T12 IL 4 1IAR Interleukin 4 

T13 P4HB 1BJX Protein disulfide-isomerase 

T14 CYP1B1 3PM0 Cytochrome P450 1B1 

T15 NOX4 5O0X NADPH oxidase 4 

T16 SLC22A8 5C65 Solute carrier family 22 member 8 

T17 PPARA 1I7G Peroxisome proliferator-activated receptor alpha 

T18 DHCR7 4QUV 7-dehydrocholesterol reductase 

T19 CYP2A6 1Z10 Cytochrome P450 2A6 

T20 IGF2R 1E6F Cation-independent mannose-6-phosphate receptor 

T22 GFER 3MBG FAD-linked sulfhydryl oxidase ALR 

T23 CYP17A1 2C17 Steroid 17-alpha-hydroxylase/17,20 lyase 

T24 NPC1 3GKH Niemann-Pick C1 protein 

T25 SERPINA6 2VDX Corticosteroid-binding globulin 

 

http://zinc15.docking.org/genes/ERN1
https://www.ebi.ac.uk/pdbe-srv/view/entry/4D1N
http://zinc15.docking.org/genes/AKR1B10
http://zinc15.docking.org/genes/NR0B2
http://zinc15.docking.org/genes/OTC
http://zinc15.docking.org/genes/FGF2
http://zinc15.docking.org/genes/ADA
http://zinc15.docking.org/genes/P4HB
http://zinc15.docking.org/genes/CYP1B1
http://zinc15.docking.org/genes/NOX4
http://zinc15.docking.org/genes/SLC22A8
http://zinc15.docking.org/genes/PPARA
http://zinc15.docking.org/genes/DHCR7
http://www.pdb.org/pdb/explore/explore.do?structureId=4quv
http://zinc15.docking.org/genes/CYP2A6
http://zinc15.docking.org/genes/IGF2R
http://zinc15.docking.org/genes/GFER
http://zinc15.docking.org/genes/CYP17A1
http://zinc15.docking.org/genes/NPC1
http://zinc15.docking.org/genes/SERPINA6
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  Table 4: Potential targets and compounds of SN for HCC treatments 

ID Gene name PDB ID Targets No Bioactive compounds 

T02 AKR1B10 1ZUA Aldo-keto reductase family 1-member B10 C09 Hyperin 

T03 NR0B2 1YUC Nuclear receptor subfamily 0 group B member 2 C16 Quercetin 

T17 PPARA 1I7G Peroxisome proliferator-activated receptor alpha C17 Quercetin-3-gentiobioside 

T18 DHCR7 4QUV 7-dehydrocholesterol reductase 
C18 Scopoletin 

T22 GFER 3MBG FAD-linked sulfhydryl oxidase ALR 

 
 

 
 

Fig. 7: Target-Organ (TO) network of SN 
Red inverted triangle: target proteins; Green octagon: organs 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8: H-Bond interaction of ligand and protein 
(A)Hyperin with 1ZUA; (B) Quercetin-3-gentiobioside with 1YUC; 
(C) Quercetin with 1I7G; (D) Scopoletin with 4QUV; (E)Sorafenib 
tosylate with 3MBG 

4. DISCUSSION  
Network pharmacology is an approach to drug design 
that encompasses systems biology, network analysis, 
connectivity, redundancy, and pleiotropy. It used to 
identify the interaction of biological systems, drugs and 
diseases from a network perspective [21]. Computation 
methodologies are more efficient to save time, money 
and labor. Computational target fishing is one of the 
major concerns in the drug design and discovery to 
address medical needs [22]. In recent, Network 
pharmacology unlocks many therapeutic ideas to 
improve the safety and efficacy of existing medications 
and it well explored in Traditional Chinese Medicine 
(TCM) [23]. A computational approach of molecular 
docking was initiated in the 1980s, a small molecular  
weight natural compounds or drug-like compounds 
were binding with protein active sites and served as a 
major key methodology in the molecular drug design. It 

includes structural optimization and identifying 
biological activity through scoring functions by protein-
ligand docking [24]. 
Identifying the ADME properties is an essential step in 
new drug development. Druglike is commonly referred 
by Lipinski’s rule of 5, as it follows the guideline in drug 
lead optimization such as molecular weight (MW), 
physicochemical properties, aromatic rings and finds the 
suitable pharmacokinetics and safety [25]. It helps to 
identify the ADMET profile of the compound and filter 
out compounds with undesirable properties, especially 
those with poor ADMET profiles. In the systematic 
pharmacology-based analyses DL ≥ 0.18 was approved 
and permissible criteria for the compound selection. In 
drug discovery, the most important steps are target 
identification; it provides the mechanism of action of 
bioactive compounds with their interacting proteins 

http://zinc15.docking.org/genes/AKR1B10
http://zinc15.docking.org/genes/NR0B2
http://zinc15.docking.org/genes/PPARA
http://zinc15.docking.org/genes/DHCR7
http://www.pdb.org/pdb/explore/explore.do?structureId=4quv
http://zinc15.docking.org/genes/GFER
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[26]. Many in silico methods, servers have been designed 
to predict the targets [27]. 
In the present work, we consolidated 23 potential 
bioactive compounds from the herb SN in the criteria of 
(DL ≥ 0.18). After mapping the 25 targets were chosen 
related to HCC. The GeneMANIA analysis was 
predicted the co-expression of genes and shared protein 
domains based on the 25 targets. It provides an idea 
about the targets and their interacting proteins functions 
for HCC treatment as well as with GO and pathway 
analysis. The constructed biological networks showed 
that SN compounds performed multiple targets, 
suggesting various pharmacological effects.  
The systematic result of the C-T network displayed an 
average degree per compound of 5 and 4 per target, 
respectively and 4 of them adjust more than 5 targets. 
The Compound-Target-Pathway network analysis 
displays 23 compounds from the top 18 drug pairs 
through the PEA algorithm, connected with the 
different tissue location. Target-Organ pathway shows 
21 potential targets mainly located in the liver and 
whole blood. 4 major pathways were highly associated 
with hepatocellular carcinoma; PPAR signaling 
pathway, Calcium signaling pathway, PI3K-Akt 
signaling pathway and MAPK signaling pathway. 
Involving in various parts of cell proliferation and 
survival, these study modules are demonstrated and 
interpreted the mechanism of SN for the treatment of 
HCC. The most common targets Identified between all 
known bioactive compounds from SN and cancer targets 
(HCC) are Aldo-keto reductase family 1-member B10, 
Nuclear receptor subfamily 0 group B member 2, 
Peroxisome proliferator-activated receptor-alpha, 7-
dehydrocholesterol reductase FAD-linked sulfhydryl 
oxidase ALR used for molecular docking 
Aldo-keto reductase family 1-member B10 (AKR1B10) 
is a protein superfamily a group of NADs(P)H 
dependent oxidoreductase involved in cancer 
therapeutics [28]. Nuclear receptor subfamily 0 group B 
member 2 (NR0B2) is a superfamily of NR (nuclear 
receptor) was involved in transcriptional regulation of 
gene networks, which modulated by NR0B2 were 
regulate the metabolic pathways, carcinogenesis, tumor 
progression, and apoptosis in the liver. Peroxisome 

proliferator-activated receptor alpha (PPARα) is a 
member of the PPAR family, It consists of three groups 

PPARα, PPARδ and PPARγ. PPARα is expressed in 
various tissue and organ such as liver and brown adipose 

tissue, heart, kidney and skeletal muscle. PPARα-
regulated the cell proliferation of breast cancer, renal 

cancer and liver diseases, also involving other biological 
processes [29]. 
In the PPAR signaling pathway, HCC has been 
associated with Hepatitis C and non-alcoholic fatty liver 
disease (NAFLD) leading to the Steatosis, is a chronic 
infection of hepatitis B and C virus in modulating 

PPARα and PPAR γ activity in PPAR pathway. 
Peroxisome proliferator-activated receptors (PPARs) 

have subtypes of PPAR α, β, γ. PPARs involving the 
regulation of lipid and carbohydrate metabolism and 
inflammatory responses, it shows the importance in 
NAFLD and HCC treatment used as suitable therapeutic 

targets [30]. Recent reports revealed that PPARγ is 
actively involving in cell growth inhibition and anti-

metastasis, also synthetic PPARγ agonists, 
thiazolidinediones (TZDs), reported anti-tumor effects 
on HCC [31].  
PI3K/Akt signaling pathway is essential for cell 
proliferation, invasiveness, angiogenesis and 
development and progression of HCC. 
PI3K/AKT/mTOR are important pathways to activated 
in HCC cell proliferation and survival. HCC cell 
survival was reported by different signaling pathway, 

mTOR signaling, ERK signaling, NF-κB signaling, and 
the p53 signaling pathways [32]. The pathway includes 
major targets of serine/threonine kinases c-Raf and B-
Raf, the receptor tyrosine kinases VEGFR2, VEGFR3, 
platelet-derived growth factor receptor (PDGFR), 
FLT3, Ret and c-kit [33]. 
The mitogen-activated protein kinase (MAPK) is the 
main pathway in cancer cell survival for humans. The 
negative regulator of Sprouty and DUSP1 proteins 
where are down-regulated in HCC tumors in the MAPK 
pathway. The target proteins were involved in the 
MAPK pathway is VEGFA and FGF2. The VEGF 
pathway is expressed VEGF mRNA in liver tumors and 
also it increases the hepatocarcinogenic process in 
normal liver. It's played a vital role in HCC invasion and 
metastasis [34]. VEGF expression induces liver cancer. 
FGFR signaling is one of the largest families of growth 
factors that include 20 different FGFs and it is associated 
with tumorigenesis. Interestingly, the SN compounds 
also regulating various pathways related to breast 
cancer, gastric cancer, prostate cancer, pancreatic 
cancer, and Bladder cancer [35].  
Asia is the most populated land in the world it hosts 
60% of the world’s current human population. The 
highest prevalence of HCC distributed in Asia. In the 
world, the highest liver cancer rate recorded in China, 
according to the cancer registry [36]. It consists, more 

http://dict.youdao.com/w/perform/#keyfrom=E2Ctranslation
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than 80% of HCC patients, recorded chronic hepatitis B 
virus (HBV) infection. In India, HBV, HCV infection 
and alcohol consumption are the main causes of HCC 
[37]. HCC accompanies and spreads the infections into 
the other organs in the body in the colon, kidney, 
pancreas, uterus and uterus corpus. SN is commonly 
used in TCM to treat various cancers and other illness. 
Hence, to treat the disease-specific to compound or 
targets provide effective treatment and rapid control.  
This study was reliable for the traditional concept of 
“multiple drugs and targets with multiple effects.” 
Network pharmacology is a valuable and convenient 
technique to approach scientifically with traditional 
knowledge in the field of drug discovery. Network 
pharmacology plays a role to understand the botanical 
and efficient components for the drug development 
process by a holistic approach. The study predicted 4 
bioactive compounds and 5 potent targets from SN for 
the effective candidate against HCC, provided a neat 
and clear understanding to the mechanism of action of 
the candidates, and the therapeutic values by target 
fishing. Together, the study provides a systematic view 
against the hepatocellular carcinoma mechanisms of 
Solanum nigrum L from a network-based perspective. 
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