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ABSTRACT 
The term chaos is used to describe fluctuations about the mean deterministic stationary value of a physical quantity. It is now being 
increasingly realized that chaos is an important ingredient to bring order in dynamical processes. Though it appears counterintuitive, 
chaos seems to help in directing transport processes in biological systems at the molecular level. BIS stands for breakdown of 
integrated system. In this paper, we consider the nanosystems in the n-dimensional BIS manifold and discuss some illustrations of 
the chaotic nanostructures and nanosystems due to BIS processes. Temperature inhomogenicities will be explained in terms of   
Laudauer's Blow-torch theorem and thermodynamic efficiency of the nanosystem will be discussed in the BIS manifold. Finally we 
will justify the applicability of the ratchets with reference to our present studies. 
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1. INTRODUCTION  

 
Frictional forces offer resistance to motion. The larger the 

coefficient of friction the larger becomes the resistance to 
motion. Therefore, if the medium is inhomogeneous the 
resistance to motion will vary in space accordingly. If the 
coefficient of friction varies periodically (such systems can be 
fabricated or found to exist in Nature, mostly in biology) so 
will the forces of resistance. Also, as we see from our 
prototype potential of Figure 1 [1], the force acting on the 
particle, derived from the potential function, varies 
periodically in space. It is possible to combine these two 
ingredients together to obtain macroscopic current. It is 
possible, though it requires the presence of external noise. The 
chaos need not be correlated as is required of the rocking and 
flashing ratchets. Also, the periodic potential function need not 
be spatially asymmetric in order to obtain macroscopic current 
in this minimal n-dimensional BIS model. 

 
2. MATERIAL AND METHODS 

 
2.1. Inhomogeneous Ratchets for the Nanosystems 

 
It has been shown that if the periodicity of the coefficient 

of friction and the potential function are the same but are 

shifted by a phase difference,  other than 0 and ,  
 

macroscopic current is obtained. Under this condition, a 
particle moving in the medium, in the presence of external 
noise, will feel as though it is moving in a periodic potential 
field in combination with a constant force. For a plausible 
mechanisms behind the macroscopic current. The direction of 

macroscopic current depends on the phase difference . A 
mentioned above, the original periodic potential need not be 
symmetric. The asymmetry of the potential, however, 
provides an extra control parameter. A proper choice of 
asymmetry helps in reversing the direction of the macroscopic 
current as a function of the strength of the fluctuating forces. 
Here too one can think of many variants of the model. The 
macroscopic current can also be obtained in a symmetric 
potential system in a homogeneous medium but the system 
needs to be driven by a zero average but temporally 
asymmetric periodic field [2]. 
 
2.2. Temperature Inhomogenicities in terms of   

Laudauer's Blow-torch Theorem 
 

In the presence of external (parametric) chaos the particle 
on an average absorbs energy from the noise secure (without 
having to satisfy the condition of fluctuation-dissipation 
theorem). The particle spends larger time in the region of 
space where the friction is higher and hence the energy 
absorption from the noise source is higher in these regions. 
Therefore, the particle in the high friction regions feels 
effectively higher temperatures. Thus, in the presence of 
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external (parametric) noise the problem of motion of a particle 
in a space dependent friction becomes equivalent to the 
problem in a space dependent temperature. Let us consider 
Figure 1 as an illustration of a special case of the equivalent 
problem. Let the darkened regions represent the regions of 
higher temperature.  

 
A particle in the darkened regions, on the average gains 

more energy as compared to other regions and thus finds it 
easier to cross the peak of the potential and go over to the left 
side well, whereas for a particle on the left side of the peak it is 
not as easy to cross over to the right side well. Hence a current 
in the left direction is assured. Thus follows as a corollary to 
the Laudauer's blow-torch theorem that the notion of stability 
changes dramatically in the presence of temperature 
inhomogenicities. In such cases the notion of local stability, 
valid in equilibrium systems, does not hold. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig: 1. The figure shows a model potential periodic in space. The 

temperature, however, is non uniform in space. The darkened 
parts show regions of higher temperature 

 
2.3. Driven Ratchets for the Nanostructures and    

Nanosystems 
 

Some eucaryotic cells (for example, sperm cells) have long 
(macroscopically) uniform (but microscopically structurally 
periodic polymeric) tails (just like microtubules), in some 
cases, called flagella. They swim in viscous fluids and are 
helped by flagellar flappings. Each flapping consists of two half-
cyclic strokes: Power and reverse. To complete the power 
stroke it takes less time than the reverse stroke, that is, one is 
swift and the other gentler. Both taken together form a period 
(of flapping). The transverse flappings in the vicious medium 
(that is, the nonuniform relative motion between the flagellium 
and the viscous medium) help propel the cell (as a whole) 
longitudinally ahead. Here effectively (macroscopically 
stationary) medium in contact with the flagellium exerts the 
necessary force on the flagellium and hence on the cell. (If the 
head of the cell (swimmer) were somehow pinned in space the 
fluid would acquire a macroscopic motion) Consider a similar 
situation but keep that flagellium (or a microtubule) stationary 
and let a particle loosely in contact with it experience a 

nonuniform time varying force on conjunction with the viscous 
medium. The stationary flagellium (microtubule) offers a 
periodic potential. Apply the oscillating force (on the particle) 
along the length of the microtubule. The a force is such that it 
changes (per period) from its maximum (+ | F |, say) value to 

the minimum (  | F |) in a shorter time than the time it takes 
to change from the minimum value to the maximum (such that 
the timed integral of the force over a period of zero). Let us 
see the macroscopic motion of the particle along the length of 
the stationary microtubule. 

 
Let us concretize the problem. Consider a particle in a 

symmetric periodic potential. The particle is in thermal contact 
with the medium (Gaussian white noise) [3]. It is subjected to a 
temporally periodic but asymmetric (zero average) external 
forcing (Figure 2). The particle has a net unidirectional 
motion? Indeed, the particle shows macroscopic motion. Also, 
the macroscopic current shows a peak as a function of noise 
strength that is the current shows stochastic resonance behavior 
as well. When the system is driven by an asymmetric field the 
motion of particles becomes more synchronized in one 
direction than the other. A one can see when F < Fcl the 
potential barrier does not vanish but becomes the smallest 
(largest, for crossing in the opposite direction) when the field 
value is the largest. It is in that situation that the barrier 
crossing becomes most probable (least probable in the opposite 
direction). The passage also depends on the length of duration 
the particle sees a low potential barrier and the energy it has 
gained during the external field cycles (dragging the particle 
along) as the field value approaches its maximum [4]. Since the 
field sweeps in the two half cycles are not the same, passages 
are not symmetric on both the directions giving rise to 
macroscopic current. This macroscopic current depends in a 
complex manner on various parameters including the noise 
strength. This important model, however, has not received 
much attention. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig: 2. Temporally periodic force acting on a nanoparticle. The 
force is asymetric in time as seen from the slopes in each period; 

average force per period is zero. 
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3. RESULT S AND DISCUSSION 
 

3.1. Efficiency of Ratchets for the Nanostructures 
 

In all the model ratchets discussed so far we require to 
spend energy in order to obtain macroscopic (particle) current. 
Ratchets are, thus, tiny machines to generate current (like 
electric current, if the particles are charged, for example|). 
Machines are useful only if some work can be efficiently 
extracted out of it. (Molecular motors in the living cells 
function with very high efficiency). The efficiency of machine is 
defined as the ratio of the amount of useful work extracted 
from it to the amount of energy (or Gibbs free energy) 
supplied to it in order to get that much useful work. In all the 
examples of ratchets that we have considered so far no useful 
work seems to have been accomplished. It is because the 
particle moving in the periodic potential system ends up with 
the potential energy even after crossing over to the adjacent 
potential minimum. That is to say, no extra energy is stored in 
the particle which can be usefully expended when desired. 
Therefore, in order to calculate efficiency of the ratchet we 
need to apply a load, L. In such a case the particle moves 
against the load performing thereby some work (W). Here the 
input energy (Ein) coming from the source of nonequilibrium 
(i.e., the external agent that provides the energy to alternately 
change the potential profile) is transformed into mechanical 

energy related to the load. The thermodynamic efficiency ( ) 
is, therefore, given by the following equation: 

in

W

E  
The calculation of W and Ein are based on Langevin 

equation using a formalism of stochastic energetic. Using this 
method one can readily establish the compatibility between the 
Langevin equation approach to Brownian motion and the laws 
of thermodynamics. It is important to note that an analysis of 
fluctuations is essential for the calculation of efficiency of a 
ratchet system at the molecular level. These fluctuations are 
completely ignored for the working of the conventional heat 
engines at larger scale. The efficiency of Brownian motors 
(ratchets) is extremely sensitive to system parameters and 
exhibits several counter-intuitive behavior. Noise for example, 
may facilitate energy conversion, i.e., increasing the strength 
of noise can make a ratchet engine more efficient. By going 
away from quasistatic limit (adiabatic limit, by for example, 
increasing the frequency of the external pumping agent) 
efficiency can be increased, contrary to what is known for the 
macroscopic reversible heat engines. 

 
It is the flashing ratchet, however, which shows the 

promise for large efficiency owing to the fact those 
macroscopic current results due to the sliding of particles 
down the potential slope. For independent particle motion the 
efficiency remains low (usually < 5% but with suitable choice 
of ratchet parameters it can be increased). But when the 

particles are coupled the efficiency shows a marked increase 
(~50%). This could be because of the possibility of a particle 
sliding away from its parent potential valley to pull along 
another coupled particle which otherwise would have slid 
down to the minimum of the parent potential valley. With a 
suitable choice of the ratchet parameters this mechanisms may 
work to enhance the value of macroscopic current and hence 
the efficiency. The result is quite intriguing because given all 
the other parameters same the coupled particles (with larger 
effective mass) should give lower current than the independent 
particles. 
 
3.2. Applicability of Ratchets for Chaotic Nanosystems 

 
It was mentioned earlier that by choosing the parameters 

of the ratchet operation it is possible to reverse the direction of 
the macroscopic current as a function of chaos strength or any 
other parameter. This is a very interesting and important result 
from the practical point of view. Noise strength, however, is 

related to the friction coefficient  which, in turn, also depends 
on the sliape size, etc. of the macroscopic particle. Therefore, 

different types of particles will have different values of  . 
Thus, it is possible to time the parameters of the ratchet 
operation such that in a mixture of the two types of particles: 
the current for one type of particle will have opposite direction 
than the current for the other types of particles (with different 

 value) for the same (other) operating parameters. The ratchet 
mechanisms, therefore, can be used to separate them by 
exploiting their opposite motional properties in the 
appropriate domain of parameter space. The possibility of such 
micro machines is under intense investigation these days. 

 
It has been suggested that the understanding gained in 

obtaining noise-induced transport fan be exploited and applied 
in diverse fields including game theory. Indeed, a new area has 
emerged under the subject of Parrodno's paradoxes in game 
theory. Here, for example, two separately losing (with 
probability one) gambling games when played in combination 
in random sequence may lead to a winning game with 
probability one. These games are inspired by flashing Brownian 
ratchets and are discrete time version of ratchet models. The 
flashing ratchet can be viewed as the combination of two 
separate dynamics: Brownian motion in an asymmetric 
potential and Brownian motion on a flat potential as discussed 
in the section on flashing ratchets in Part 1. In each of these 
cases, the particle does not exhibit any asymmetric motion. 
However, when they are alternated the particle moves to the 
left. The effect persists (i.e., the direction of net current being 
to the left) even if we add a small uniform external force 
pointing to the right. In that case, the two dynamics discussed 
above yield motion separately to the right, but when they are 
combined the particle moves to the left. This apparent paradox 
points out that two separate dynamics, in which a given 
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variable decreases (or increases), when combined together 
the same variable, in certain circumstances, can increase (or 
decrease) in the resulting combined dynamics. This basic fact is 
utilized in Parrondo's games [5]. 

 
3.3. Recent Developments 

 
We now mention a few recent developments related to 

the subject. In adiabatically rocked classical ratchets (for | F | 
< Fcl) at temperature T = 0 the macroscopic current identically 
vanishes. However, quantum mechanically the macroscopic 
current can arise due to the possibility of tunneling through the 
barriers. It turns out that the direction of this current is 
opposite to the classical macroscopic current obtained at high 
temperatures for the same ratchet system of Figure 1. In a 
string of a triangular quantum dots (simulating effectively a 
ratchet potential) in GaAs/AlGFaAs heterostructures in the 
change in the direction of macroscopic current as a function of 
temperature has been observed experimentally. This clearly 
indicates a case of cross-over from quantum to classical regime. 
Such cross-over effects are of interest in the area of foundation 
of quantum mechanics. A parallel development in mesoscopic 
physics has led to the discovery of quantum pumps, where one 
can obtain currents (in the absence of bias). For this purpose 
one needs to vary at least two system parameters periodically 
in time but with a phase difference. The phase difference 
determines the direction of current. Its analogous aspects are 
being explored in classical systems. 

 
In an another related recent development in ratchet 

system (for single particle case) the phenomenon of absolute 
negative mobility (as opposed to negative differential mobility) 
has been predicted In these non equilibrium systems, currents 
are zero in the absence of bias. However, with the application 
of a small bias the current flows in the direction opposite to the 
direction of bias. The existence of such phenomena has also 
been predicted in a system of coupled particles even in periodic 
potentials which exhibits symmetry breaking transition in 
nonequilibrium situations. Also, studies of ratchet systems in 
higher dimensions have indicated the possibility of rerouting 
the particles in any desired direction by appropriately choosing 
the ratchet-potentials and other parameters. 

 
Currently, the notion of reversible ratchets has been of 

considerable interest. In these systems energy dissipation or 

entropy production is essentially zero. A deep connection 
between efficiency, entropy and information are being pursued 
intensively. These investigations may help in furthering 
fundamental developments in the area of driven 
nonequilibrium systems. 

 
In summary, we have discussed qualitatively the 

phenomenon of chaos-induced transport, in the absence of 
bias, in periodic (mostly) asymmetric (ratchet) potentials. For 
such macroscopic currents not only is the presence of noise 
essential but its presence with optimal strength helps in making 
the current peak with appreciable value. The essential idea 
behind this nonequilibrium phenomenon, however, remains 
the same. It is remarkable that fluctuating random forces help 
in obtaining deterministic (ordered) current, as seen in all the 
ratchet examples, and by controlling the strength of the 
randomly fluctuating forces one can maximize it too. Stochastic 
resonance helps in tuning the effect optimally. Both the ratchet 
effect and the stochastic resonance (separately or together) are 
seen to play important roles in diverse systems including 
biological systems. A few examples of the phenomena where 
noise plays constructive role have been given in the 
introduction. The important role of chaotic nanostructures in 
these phenomena has led to a new paradigm in natural sciences 
wherein attempts are belong made to harness noise for useful 
purpose. 
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