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ABSTRACT 
Sound in the natural environment form an important class of biologically relevant non-stationary signals. We propose a dynamic 
spectral measure to characterize the spectral dynamics of such non-stationary sound signals and classify them based on rate of change 
of spectral dynamics. We categorize sounds with slowly varying spectral dynamics as simple and those with rapidly changing spectral 
dynamics as complex. We propose rate of spectral dynamics as a possible scheme to categorize sounds in the environment. 
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1. INTRODUCTION  
 

The human auditory system is capable of discriminating a 
large variety of complex sounds in the natural environment. 
Interestingly, anatomical studies of the adult human brain 
indicate that specialized regions of the brain analyse different 
types of sounds [1]. Music, speech and environment noise are 
processed in areas that are anatomically distinct. [2] However, 
the reasons for this kind of functional organization are not 
clearly identified. We study the spectral dynamics of different 
environmental sounds and develop indices to quantify rate of 
change of spectral dynamics. We propose rate of change of 
spectral dynamics to explain sound categorization. 
 

The left panel of figure 1 shows examples of sound-
pressure waveforms from the natural environment. A striking 
feature of these different waveforms is that the successive 
disturbances are not equally spaced in time and are not of 
constant shape. In fact, a characteristic feature of these 
waveforms is the variation of spectral content as a function of 
time. Such non-stationarity in spectral content, which is a 
common feature of biological signals (electroencephalography, 
for example) makes it difficult to study such signals using 
standard analysis techniques. New methods of analysis, which 
use joint time-frequency representation (TFR) have emerged as 
convenient methods to describe such non-stationary dynamics. 
A TFR is obtained by mapping a one-dimensional signal 
(continuous or discrete) is the time domain into a two-
dimensional time-frequency representation. It allows a 
simultaneous analysis in the time and frequency domains. TFRs 
provide localization both in time and frequency, within limits  
 

 
of resolution allowed by the uncertainly principle [3]. We 
study one such class of TFRs called spectrograms. 

Fig. 1: Left panel shows time-amplitude waveforms for some 
environmental sounds Tool (saw), page turn, aeroplane and laughter 
show time varying spectral structure which is shown in the right panels 
in the spectrographic representation using a 45 Hz Hamming window. 
Frequency (in Hz) is plotted on the y-axis while time (in s) is plotted 
on the x-axis with intensities (in dB) represented in colour. Red 
indicates maximum power while blue indicates minimum power. The 
colour index is relative to the highest and lowest intensities for each 
signal. 
 

In the following sections, we identify a data set of sounds 
in the environment and describe them using the spectrographic 
representation. We find that the spectral structures, one that 
has a periodic or harmonic spectral distribution and the other 
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that has noisy spectral distribution. We identify a measure to 
characterize such spectral structures and propose that the 
spectral dynamics of any sound in the environment can be 
described in terms of these spectral structures. We define an 
index to characterize ‘sound complexity’ in terms of the 
number of distinct spectral structures and estimate the 
complexity of different environmental sounds. We suggest that 
spectral features of sounds in the natural environment could be 
a basis for the evolution of specialized auditory processing areas 
in the human brain. 

 

2. DATA 
 

Sounds are collected from online databases and were 
drawn from several different classes-animal cries (e.g. cow 
moo), environmental sounds (telephone ring, airplane noise), 
and human non-verbal vocalizations (e.g. laughter). The 
sampling frequency of all sounds was 22,050 Hz. The sounds 
were pre-processed using Goldwave (version 5.10) software 
for noise reduction. Noise reduction is the elimination of 
unwanted noise, such as a background hiss or a power hum 
within a sound. Goldwave was also used to ensure that all 
sounds were matched for 2-s length. 

 

3. METHODS 
 

As described earlier, new analysis techniques, which use 
joint time-frequency representation (TFR) within the limits of 
resolution allowed by the uncertainly principle [3] have 
emerged as convenient methods to describe non-stationary 
dynamics. For signals, where the dynamics can be considered 
to be stationary in short time windows, the short time Fourier 
transform (STFT) [3], has been found to be extremely useful. 
A display of the sound signal using the STFT in the time-
frequency representation is called the spectrogram. A 
spectrogram is obtained by first partitioning the signal into 
small overlapping equal segments of time t and then carrying 
out a STFT, for each segment [3]. The STFT of a function is 
defined as 
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Where, s(t) is the signal, f is the frequency and h(t) is the 
window function. For signals where temporal resolution is 
required, h(t) is narrow and spectral resolution is poor. On the 
other hand, for good frequency resolution, h(t) is broad and 
provides poor temporal resolution [4]. The energy-density 
spectrum of STFT is defined as a spectrogram (right panel of 
fig. 1). The spectro-temporal structure of complex sounds 
viewed in the spectrographic representation exhibits essentially 
two kinds of spectral structures: (1) harmonic and (2) noisy. 
The spectral structure in some regions is highly patterned (see 
the vertical stripes in the top right panel) suggesting periodic or 
harmonic structure whereas in other regions the underlying 
spectral distribution is noisy (see the right panel, third from 
top). 
 

A standard method to measure the amount of spectral 
structure in a stationary signal is the spectral flatness measure 
(SFM) [5]. The SFM estimates the number of peaks in the 
power spectrum as opposed to a flat spectrum and is defined as 
the ratio of the geometric mean to the arithmetic mean of the 
power spectrum. A distribution of the power spectrum is 
expressed as 
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Where, S(f) is the magnitude of each frequency 
component in Hz and N is the number of FFT points used to 
estimate the power spectral density of s(t). For a pure tone, 
which has a single peak in the power spectrum and has the 
simplest spectral structure, SFM is 0, whereas for white noise, 
which has infinite peaks, SFM is 1. To expand the dynamic 
range it is expressed on a logarithmic scale and thus, for a pure 
tone, SFM is minus infinity whereas for a white noise signal, 
SFM is 0. Low SFM sounds are, therefore, tonal while high 
SFM sounds are noisy. 
 

For non-stationary sounds, we define a time-dependent 
SFM(t), which estimates the spectral structure in each 
temporal segment. SFM(t) defined in terms of S(t,f) is obtained 
from the spectrographic representation as 
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Where, S(t, f) is the power associated with each frequency 
component is that particular temporal segment. To describe 
environmental sounds which have varying spectral dynamics, 
we propose an index of spectral variability, namely spectral 
structured index (SSI) in terms of the variance of SFM(t) as 
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Where, N is the number of time frames and SSI is the 
average spectral variance for a given signal. 
 

We calculate SSI for different environmental sounds and 
propose a categorization of environment sounds in terms of 
SSI. For sounds with spectral distributions fluctuating rapidly 
across time frames, SSI is large and we classify them as 
complex sounds. On the other hand, when variation in the 
spectral distribution across time frames is small we classify 
them as simple sounds. We suggest that the SSI defines degree 
of special complexity and can be used to categorize sounds into 
varying levels of complexity. 

 

4. RESULTS 
 

A total of 15 sounds were analysed. To deal with silences 
in sounds, we extracted epochs in the sound signal where 
power is <1 dB and assigned them an SFM value of 0. 
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Narrowband spectrograms were obtained using a 45Hz 
Hamming window for all the sounds. Fig. 2 shows computed 
values of SFM(t) plotted on a logarithmic scale for some of the 
sounds. As seen in fig. 2, SFM(t) does not change much across 
time windows for airplane noise (for example), a feature which 
is also reflected in the spectrographic representation (figure 1). 
On the other hand, for laughter, SFM(t) shows fluctuations 
across time windows. Thus SFM(t) follows the spectral 
dynamics in successive time frames. 

 
Fig. 2. Plot of SFM(t) vs, time for different environmental 
sounds 

The variation in spectral structure across time windows for 
different environmental sounds, as estimated by SSI, is shown 
in table 1. For signals with similar spectral dynamics across 
time windows SI<1 (airplane noise, for example), while for 
signals with varying spectral dynamics across time windows 
SSI>1 (laughter). We therefore suggest that, based on spectral 
dynamics, sounds in the natural environment may at least be 
classified into two categories, namely simple and complex. 
Signals with SSI<1, can be classified as simple sounds, whereas 
sound signals with SSI>1 can be classified as complex sounds. 
 

Table 1. SSI for various environmental sounds. (BIS Processes, 
BIS-communication) 

 

Complex sounds Simple sounds 

Cow 1.0532 Tool (Saw) 0.219 
Doorbell 1.1103 Breaking glass 0.3525 
Coin drop 1.2509 Phone ring 0.423 
Crow 1.4835 Ox 0.5219 
Laughter 1.8827 Bagpipes 0.5747 
Chickens 2.0167 Aeroplane 0.7471 
Crying 2.3601 Horn 0.8361 
Squirrel 6.9204 Page turn 0.899 

 
 
 
 
 
 
 
 
 

5. CONCLUSIONS 
 

We propose a classification of sounds in environment in 
terms of spectral dynamics. Sounds for which the spectral 
structure varies slowly across time windows are categorized as 
simple and sounds with rapidly changing spectral dynamics are 
categorized as complex. Based on our results we suggest that 
the auditory system may adopt processing strategies that might 
be similar for sounds with similar spectral dynamics, which 
could be a crude explanation for their anatomical organization 
in different regions of the human brain [1]. Functional 
neuroimaging experiments are required to validate our 
proposal and are currently in progress. Our analysis shows that 
the spectrographic representation presents a convenient 
representation to describe the rich spectral dynamics of non-
stationary signals. The spectral structure index (SSI) could 
emerge as a novel measure to study spectral complexity in 
physical and biological systems. 
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