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ABSTRACT 
Convergence diagnostics help to decide whether the Markov chain has reached its stationary and to determine the number of 
iterations to keep after the Markov chain has reached stationary. There are no conclusive tests that can tell you when the Markov 
chain has converged to its stationary distribution. In this study, we examine some convergence diagnostics for zero inflated Poisson 
models for air pollution data. 
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1. INTRODUCTION  
 

Poisson regression model is the most common model that 
used for the analysis of the count data. One of the assumptions 
of the Poisson distribution is that mean and variance are equal. 
However, if the data contains an excess number of zeros, 
Poisson regression models will exhibit over dispersion. Using 
zero-inflated Poisson model that allow for excess zero would 
be more appropriate if the over dispersion is due to an excess 
number of zeros. Bayesian analysis is a field of statistics that 
based on the notion of conditional probability. In the literature 
several authors have recently proposed Bayesian alternatives to 
fitting zero inflated models. The Markov Chain Monte Carlo 
(MCMC) method is the most common method for the Bayesian 
analysis. The basic idea of MCMC is to generate samples from 
the posterior distribution and uses these samples to 
approximate expectations of quantities of interest. For the 
process there are usually two issues. First, to decide whether 
the Markov chain has reached its stationary, or the desired 
posterior distribution and second, to determine the number of 
iterations to keep after the Markov chain has reached 
stationarity. Convergence diagnostics help to resolve these 
issues. Several statistical diagnostic tests like Raftery and 
Lewis, Geweke test and Heidelberger and Welch test can help 
to assess Markov chain convergence [1-4]. In this study, we 
examine some convergence diagnostics for zero inflated models 
for air pollution data. 
 
2. MATERIAL AND METHODS 
 

2.1. Zero Inflated Poisson Model 
 

Zero-inflated poisson (ZIP) model, well described by 
Lambert is a simple mixture model for count data with excess  

 
zeros [5]. Specifically if Yi are independent random variables 
having a zero-inflated Poisson distribution, the zeros are 
assumed to arise in two ways corresponding to distinct 
underlying states. The first state occurs with probability   

and produces only zeros, while the other state occurs with 
probability (1- ) and leads to a standard Poisson count with 

mean   and hence a chance of further zeros. This two-state 

process gives a simple two-component mixture distribution 
with  p.m.f 

 
The mean and variance of   are 

 

 
indicating that the marginal distribution of Yi exhibits over-
dispersion, if > 0. It is clear that this reduces to the standard 

Poisson model when = 0. For a ZIP model the log-

likelihoodfunction is given by 

 
 
2.2. Bayesian Analysis 
 

Bayesian analysis is a field of statistics that based on the 
notion of conditional probability. In general, Bayesian 
statistical methods start with a “prior” distribution for all 
unknown parameters, updates this prior distribution in the 
light of the data (i.e., using likelihood) to construct the 
“posterior” distribution, and then uses the “posterior” 
distribution for inferential decisions. The posterior density or 
distribution given by 
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Where,   is prior distribution and    is the log-

likelihood function.  
 
        In this study we use the uniform distribution as prior 
distribution for the parameter of the ZIP model. In the 
literature several authors have recently proposed Bayesian 
alternatives to fitting zero inflated models. The Markov Chain 
Monte Carlo (MCMC) method is the most common method 
for the Bayesian analysis. The basic idea of MCMC is to 
generate samples from the posterior distribution and uses these 
samples to approximate expectations of quantities of interest. 
For the process there are usually two issues. First, to decide 
whether the Markov chain has reached its stationary, or the 
desired posterior distribution and second, to determine the 
number of iterations to keep after the Markov chain has 
reached stationarity. Convergence diagnostics help to resolve 
these issues. 
 
2.3. Markov Chain Convergence Diagnostics  

 
2.3.1. Geweke Diagnostic 
 

The Geweke test compares the sample mean in the early 
segment of the Markov chain to the mean in the latter segment 
of the chain in order to detect failure of convergence [2]. This 
is a two-sided test, and large absolute z-scores indicate 
convergence problems. The statistic upon which this diagnostic 
is based has the general form 

 
 
where the variance estimate   is calculated as the spectral 

density at frequency zero to account for serial correlation in 
the sampler output. 
 
2.3.2. Heidelberger and Welch Diagnostic 

 
The stationarity test is one-sided; rejection occurs when 

the p-value is greater than 1 - alpha. To perform the half-width 
test, we need to select an alpha level and a predetermined 
accuracy value. If the calculated relative half width of the 
confidence interval is greater than the accuracy value, we 
conclude that there are not enough data to accurately estimate 
the mean with 1-alpha confidence under that specific accuracy 
value [3,4]. Given an MCMC chain the null hypothesis of 
convergence is based on Brownian bridge theory and uses the 
Cramer-von-Mises test statistic 

 
                                  
 
 

Where 

 
 , 
and  is the spectral density evaluated at frequency zero. 

 
2.3.3. Raftery and Lewis Diagnostic 

 
 The methods of Raftery and Lewis are designed to estimate 
the number of MCMC samples needed when quantiles are the 
posterior summaries of interest [1]. Their diagnostic is 
applicable for the univariate analysis of a single parameter and 
chain.  

i. Nmin is the minimum number of iterations required to 
estimate the quantile of interest with the prespecified 
accuracy under the assumption of independence (i.e., with 
zero autocorrelation). 

ii. N is the total number of iterations that the chain must run. 
iii. M is the number of burnin iterations. 
iv. I is the dependence factor given by I = N/Nmin, which 

indicates the relative increase of the total sample due to 
autocorrelations. If I is equal to one, then the generated 
values are independent. On the other hand, values greater 
than 5 often indicate a problematic behavior; for details, 
see [6].  
 

2.3.4. MCMC error 
 

For each of the parameters the following inequality must 
be hold.  Monte Carlo Standard Errors<5% of standard 
deviations 
 
3. RESULTS AND DISCUSSION 

 
A part of the data was used by Cengiz and Cengiz and 

Terzi [7, 8]. The data set obtained from Afyon Respiratory 
Disease Hospital and Afyon Environmental Department Air 
Pollution Unit between 1 October 2006 - 30 September 2010. 
The data examines the relations between the numbers of 
admissions with respiratory disease who applied to Afyon 
Respiratory Disease Hospital and the measures of air pollution 
(SO2 (Sulfur dioxide) - PM10 (Particulate matter) values) at the 
city centre. After performing Bayesian ZIP analysis using 
uniform prior for all parameter in the model, the results for 
convergence diagnostics for all parameters with different 
number of iterations are obtained as per the following table: 
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Table1. Results for convergence diagnostics for each parameter for different iteration number 

  

  
Number of iteration 
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- - - - + + + + 

M
C
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/
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 Intercept - - - - + + + + 

SO2 - - - - + + + + 

PM10 - - - - + + + + 

Intercept (inflation 
parameter) 

- - - - - + + 
+ 

“+ “ shows that the Markov Chain reached convergence, “-“ shows that the Markov Chain did not reached convergence. After 40000 iterations, the Markov chain for all parameters 
reached convergence for all diagnostics. The results of diagnostics for convergence are given in Table 2. 

 
Table2. Results for convergence diagnostics for each parameter for 40000 iterations 
 

 
Geweke Diagnostics 

Raftery-
Lewis 

Diagnostics 
Heidelberger-

Welch Diagnostics 
MCSE/SD 

 

z Pr >|z| 
Dependence 

Factor 

Cramer-
von-Mises 

Stat 
p 

Intercept -0,9863 0,324 1,0758 0,0506 0,8724 0,0201 

SO2 -0,3933 0,6941 1,1209 0,0432 0,916 0,0199 

PM10 1,0696 0,2848 1,0980 0,0722 0,7381 0,0196 

Intercept (inflation parameter) -1,0416 0,2976 1,1209 0,1135 0,5226 0,0236 

 
As shown in table 2 for 40000 iterations the diagnostic 

statistics all show that the Markov chain reached convergence. 
The Geweke statistics not significant, the Raftery-Lewis 
statistics show an adequate sample size, and Heidelberger-
Welch diagnostics all passed The ratio of the Monte Carlo 
standard errors and the standard deviations is much smaller 
than 0,05. 
 

 
We produce a number of graphs which also aid convergence 
diagnostic checks. As an example Figure 1 shows diagnostic 
plots for PM10. From the trace plots we can say that the mean 
of the Markov chain has stabilized and appears constant over 
the graphs. The plots show that the chains appear to have 
reached convergence. The posterior autocorrelations are quite 
small and the posterior density appears bell-shaped 
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Fig.1. Diagnostic Plots for convergence check 

 
4. CONCLUSION 
 

Convergence diagnostics help to decide whether the 
Markov chain has reached its stationary and to determine the 
number of iterations to keep after the Markov chain has 
reached stationary. There are no conclusive tests that can tell 
you when the Markov chain has converged to its stationary 
distribution. In this study, we examine some convergence 
diagnostics for zero inflated model for air pollution data. We 
show that after 40000 iterations, the Markov chain for all 
parameters reached convergence for all diagnostics. 
We suggest that you should proceed with caution. Meanwhile, 
note that you should check the convergence of all parameters. 
With some models, certain parameters can appear to have very 
good convergence behaviour, but that could be misleading due 
to the slow convergence of other parameters. If some of the 
parameters have bad mixing, you cannot get accurate posterior 
inference for parameters that appear to have good mixing. 
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