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ABSTRACT 
The ability of copper complexes to bind to DNA and exhibit antitumor and antimicrobial activity is well established. The 
organic ligands of copper complexes do affect and regulate the activity by changing lipophilicity and intercalation to 
DNA. Quantitative structure activity relationship (QSAR) analysis is widely applied drug design and development 
method, here we make an attempt to develop a QSAR model for copper complexes, relating their physicochemical and 
quantum chemical descriptors with DNA binding constant (Kb). A set of 30 copper complexes with reported Kb values 
were selected from literature, these were built in Chemdraw and optimized using Semi-emprical PM3 method in 
Hyperchem 7.5. Different physicochemical and quantum chemical descriptors were calculated for the complexes. 
Double cross validation tool v2.0 was used to develop Multiple Linear Regression (MLR) model using Genetic Algorithm 
(GA) based variable selection technique. Different QSAR models were developed using 20 complexes as training set and 
the remaining 10 complexes were used as test set for external validation of the GA-MLR QSAR model. The best QSAR 
model obtained showed R2 of 0.9076 and external validation Q2

test of 0.678. The statistically stable model thus obtained 
gives us an opportunity to understand and develop better QSAR model based on advanced Quantum chemical protocols.  
 

Keywords: DNA Binding, Quantitative structure activity relationship (QSAR), Multiple Linear Regression (MLR), 
Genetic Algorithm (GA) 
 

1. INTRODUCTION 
Copper is one of the essential metal ions required by all 
living organisms in trace dietary amount as it is involved 
in key biological process [1, 2]. Copper complexes have 
shown importance in metal based drug research, as from 
literature search it is evident that Cu(II) complexes 
possess antibacterial [3, 4], antifungal and antioxidant 
activities [5, 6] and DNA-binding and anticancer studies 
[7-9]. Antitumour activity of various copper(II) 
complexes have been evaluated for their potential 
cytotoxic activities on different cell lines [10, 11]. 
Primary intracellular target in treating a wide range of 
diseases and for designing of anticancer agents the 
interaction of metal complexes to DNA is of extensive 
interest [12,13]. DNA interacts with metal complexes 
through intercalation, groove and electrostatic 
interaction, among the three modes of binding 
intercalative binding is stronger as it is due to insertion of 
metal complex into base pairs of DNA [14, 15]. QSAR 
analysis is widely applied drug design and development 
 

method, but very few reports of QSAR studies on metal 
complexes have been reported in literature. One of the 
earliest reports of QSAR on metal complexes was by 
Reichert et al. [16] who applied QSAR studies on Copper 
Azamacrocycles and Thiosemicarbazones complexes for 
predicting the lipophilicity (log Po/w) of several classes 
of Cu(II)-chelating ligands.  Qian et al. have reported 
artificial neural network (ANN) based QSAR studies on 
flavonoid-metal complexes for predicting their ˙OH and 
O2¯˙free radial scavenging property and anticancer 
activity [17-19]. Recently Quang et al. have reported 
quantitative structure property relationship (QSPR) 
model for predicting stability constant of metal  
thiosemicarbazone complexes by GA-MLR and GA-
ANN [20]. QSAR studies on copper complexes relating 
to DNA binding of copper complexes have not been 
reported till date, in this article we report a GA-MLR 
based QSAR model for predicting the DNA binding 
constant of copper complexes using various 
physicochemical and quantum chemical descriptors. 
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2. MATERIAL AND METHODS  
2.1. Data set 
Copper complexes with experimental DNA binding 
activity reported as Kb values were searched from 
literature [21-37].  Total 30 complexes with Kb values 
determined in similar experimental protocol were 
selected.  The structure of the copper complexes is 
provided in Fig. 1: 
  
2.2. Calculation of the electronic structure of 

Copper complexes 
All the structures of complexes were built in Chemdraw 
and pre-optimized using the Molecular Mechanics Force 

Field (MM+) method. The resulted minimized 
structures were further refined using the semi empirical 
PM3 Hamiltonian, which is included in HyperChem 
release 7.5. A gradient norm limit of 0.001 kcal/Å for 
geometry optimization was implemented. The QSAR 
properties module from HyperChem  was used to 
calculate polarizability (Plz), the molar refractivity 
(MR), partition coefficient octanol/water(log P), molar 
volume (MV). The Quantum Chemical descriptors 
HOMO and LUMO energies, total energy (TE), dipole 
moment (DM), and Hydration energy (HE)were also 
computed using HyperChem. 

 

 
 

Fig. 1: Structure of Copper complexes 
 
2.3. Development and selection of a MLR model 

using Double cross-validation technique 
DNA binding constant (Kb) values were converted into 
log Kb and data set was sorted according to their log Kb 
values. From a range of log Kb value one or two 
molecules where selected randomly to divided the 
whole data set into training set consisting of 20 
molecules  and test set of 10 molecules. Double cross 

validation tool v2.0 was used to develop Multiple Linear 
Regression (MLR) model using Genetic Algorithm (GA) 
based variable selection technique. Descriptor and 
response values of the training and test set were 
provided, then k-fold cross validation was set to 10 to 
develop ‘k’ models. GA was set with 1000 Iterations, 
Mutation probability of 0.3 and 50 equation selected 
from each generation based on FF1(MAE based) fitness 
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function. MLR models were generated in the first step 
based on above settings by increasing the number of 
descriptors in equation incrementally till no further 
improvement in Q2 values was observed. In the second 
step an optimum model was selected with least MAE 
(validation set) value. 
 
3. RESULTS & DISCUSSION  
Copper complexes used in the study were obtained 
from various literature sources, the complexes has wide 
variety of ligands like 2-(1H-tetrazol-5-yl)pyridine, 
hydrazinylidene, pyridinyl, dihydroquinoline-3-
carboxylic acid, Azamacrocycles, 1,3-dihydro-2H-indol-
2-one, 1,3-diaminopropan-2-ol, bipyridyl, benzothi- 
oazole, phenanthroline, oxine. DNA binding ability of 
all these complexes was reported in binding constant 
(Kb) values determined by UV spectroscopy studies 
using CT-DNA. The log Kb values for these complexes 
ranged from 2.778 to 5.662, based on the binding 
constant the molecules were randomly divided into 
training and test set comprising of 20 and 10 complexes 
in each respectively, with similar distribution of activity 
range. Physicochemical descriptors like polarizability 
(Plzb), the molar refractivity (MR), partition coefficient 
octanol/water (log P), molar volume (MV), are know 

to be used in QSAR model development. The Quantum 
Chemical descriptors HOMO and LUMO, total energy 
(TE), dipole moment (DM), and Hydration 
energy(HE)are also used in developing QSAR models to 
predict the activity of a molecular species [38]. GA-
MLR model was developed using Double Cross 
Validation tool v2.0 [39]. 
Two nested cross-validation loop of internal and 
external cross-validation is carried out in this method.  
Training set is used in internal loop for building models 
and selecting of a good model where in the set is 
repeatedly split into calibration and validation sets, 
model is developed using calibration set and error in the 
model is analyzed by validation set and the model with 
least error is selected. This model is assessed by the test 
set in the external loop where in the predictive power 
of the model is examined [39]. The splitting of the 
training set into calibration and validation sets 
eliminates the bias introduced in variable selection for a 
single training set of fixed and limited composition [40]. 
Genetic Algorithm based variable selection was applied 
for development of MLR model and the Model with the 
least MAE (Validation set) was selected. The statistical 
parameters of the developed model are provided in 
Table 1. 

 
Table 1: Statistical parameters of QSAR models by GA-MLR using Double Cross Validation tool v2.0 

Model. 
No 

Descriptors 
R2 

(Train) 
Q2

LOO 
(Train) 

Q2 
(Test) 

MAE(95% 
data;Train) 

MAE(95% 
data;Test) 

AvgRm
2 

(Test) 
PredQuality 

(Test) 

1 
HE 

LUMO-E 
0.6625 0.5296 0.1958 0.3339 0.2255 0.1912 BAD 

2 
MV 
HE 

LUMO-E 
0.7186 0.5839 0.4393 0.3153 0.1783 0.413 GOOD 

3 
MV 
HE 

LUMO-E  TE 
0.847 0.7639 0.5645 0.2469 0.2002 0.5372 MODERATE 

4 
MV 
HE 

Log P LUMO-E  TE 
0.9076 0.8222 0.6786 0.2297 0.2284 0.6098 GOOD 

 
The value of regression coefficient R2 of 0.9076 and 
high value of Q2

LOO of 0.8222 show that models have 
good internal predictive ability and stability. The true 
predictive power of the QSAR models is determined by 
predicting the DNA binding constant of complexes not 
used in the model development (external prediction). 
The values of Q2 (Test) of 0.6786 and average 

Rm2(Test) of 0.6098 high and rather similar confirming 
the good external predictive ability of the developed 
GA-MLR model. The plot of experimetnal versus 
predicted log Kb values is shown in Fig. 2. 
The equation obtained for best model 4 includes five 
descriptors that includes two physicochemical 
descriptor Molar volume (MV), and partition coefficient 
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(log P) and three quantum chemical descriptors total 
energy,   Hydration Energy (HE) and energy of lowest 
unoccupied molecular orbital (LUMO-E).  The 
possibility of co-linearity was avoided by applying a 
inter-correlation coefficient cut-off of 0.95 with 
variance 0.0001, the correlation matrix is shown in 
Table-2 clearly indicate that the descriptors used in GA-
MLR model are poorly correlated with each other. 
The DNA binding constant (log Kb) and descriptors 
used in model generation of the copper complex is 
provided in table 3 along with predicted log Kb value 
for model equation and the residual value (difference 
between experimental and predicted log Kb ). Complex 
1 in training set showed the highest deviation of 0.479 
and complex 14 in test set showed a deviation of 0.371, 
this clearly indicates the predicting power of the GA-
MLR model obtained. The residuals to the experimental 
log Kb values by GA- MLR model for training and test 
set is shown in Fig.3: 
Positive signs in the equation for coefficients of TE and 
MV show that these descriptors are in direct correlation 
with the DNA binding constant while negative 
coefficient of HE, log P and LUMO indicates its indirect 
correlation. Hydration energy and LUMO-E parameters 
have more significant impact on the model equation 
relating to DNA binding constant. The complexes with 

lower Hydration energy (more negative value) and 
LUMO-E value should have better DNA binding ability. 
 

 
 
Fig. 2: Scatter plot experimental vs predicted 
DNA binding constant (log Kb) of Best GA-MLR 
model 
MLR equation for Model 4: 

log Kb = [0.0046(±0.0008)MV]˗[0.067(±0.0 091) 
HE]˗[0.0804(±0.0265)logP]˗[0.2462(±0.0357) LUM 
O-E] + [0.0369(±0.0069) TE] + [2.2916(±0.2273)] 

 
Table 2: Correlation matrix showing correlation between descriptors used in MLR 

 
Log Kb TE MV HE log P LUMO-E 

Log Kb 1 0.438 0.43 0.568 0.063 0.661 
TE 0.438 1 0.91 0.231 0.132 0.337 
MV 0.43 0.91 1 0.045 0.33 0.31 
HE 0.568 0.231 0.045 1 0.344 0.149 

log P 0.063 0.132 0.33 0.344 1 0.25 
LUMO-E 0.661 0.337 0.31 0.149 0.25 1 

 
Table 3: Calculated descriptor values, experimental and predicted log Kb values of complexes 

Complex MV HE Log P HOMO-E LUMO-E TE *103 
Expt. 

log Kb 
Predicted 

log Kb 
Residual 

1 846.79 -8.50 -2.32 -8.599 -2.069 -113.688 2.778 3.257 -0.479 
2 748.98 -9.09 -0.79 -8.146 -2.171 -96.154 3.265 3.396 -0.131 
3 1150.37 -6.56 -0.46 -7.698 -1.550 -130.763 3.470 3.616 -0.146 
4 782.44 -10.98 0.87 -8.647 -1.459 -100.248 3.491 3.217 0.275 

5* 925.49 -6.70 -2.01 -8.553 -2.008 -120.591 3.591 3.204 0.387 
6 1464.12 -8.43 2.24 -11.302 -4.822 -176.483 4.000 4.086 -0.086 
7 1172.97 -4.48 0.45 -10.648 -4.945 -130.313 4.145 4.360 -0.216 

8* 569.10 -16.41 -1.88 -12.856 -4.620 -77.834 4.223 4.426 -0.203 
9 943.07 -10.35 -4.76 -6.540 -3.747 -126.571 4.230 3.958 0.272 

10 706.50 -9.89 2.93 -11.436 -6.518 -84.736 4.322 4.446 -0.124 
11* 692.98 -12.80 3.36 -12.556 -5.434 -84.737 4.362 4.278 0.084 
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12 1026.50 -12.73 4.79 -12.541 -5.717 -117.368 4.378 4.558 -0.179 
13 913.60 -5.41 2.84 -11.342 -5.786 -99.832 4.544 4.369 0.175 

14* 1676.50 -23.40 -0.49 -11.325 -2.804 -199.993 4.550 4.921 -0.371 
15 1384.78 -13.73 -1.87 -13.971 -6.317 -187.794 4.568 4.357 0.211 

16* 1389.60 -8.07 0.36 -9.831 -4.991 -155.184 4.602 4.698 -0.096 
17 1668.92 -24.41 -1.31 -10.815 -3.466 -210.879 4.611 4.781 -0.171 
18 1428.51 -13.04 -2.21 -10.622 -8.336 -193.192 4.643 4.838 -0.194 

19* 898.08 -9.62 3.26 -11.336 -6.509 -99.907 4.653 4.721 -0.068 
20 1895.99 -7.79 6.97 -10.645 -5.733 -210.157 4.702 4.631 0.071 

21* 1234.51 -32.64 -0.76 -8.726 -0.898 -147.944 4.708 4.980 -0.273 
22 1845.73 -12.29 6.66 -11.439 -5.402 -203.243 4.725 4.900 -0.175 

23* 1920.75 -11.78 6.22 -10.945 -6.643 -217.102 4.725 5.041 -0.316 
24 1927.65 -18.26 1.17 -11.908 -5.388 -236.994 4.762 4.869 -0.108 
25 1477.37 -7.06 1.10 -10.026 -3.806 -161.366 4.851 4.455 0.397 

26* 1951.01 -11.78 6.76 -11.242 -5.006 -218.852 4.916 4.669 0.248 
27 892.05 -36.94 -2.86 -12.098 -4.481 -141.492 5.079 4.982 0.097 

28* 1488.20 -8.55 0.53 -8.259 -4.979 -161.318 5.255 4.941 0.315 
29 1488.07 -18.19 -3.43 -10.337 -4.697 -170.145 5.342 5.509 -0.167 
30 1011.72 -27.27 -0.45 -11.147 -6.283 -126.435 5.663 5.690 -0.027 

 

 
Fig. 3:  Plot of residuals to the experimental log Kb values by GA- MLR model (Blue – Training and Red 
– Test) 
 
4. CONCLUSION 
GA-MLR based QSAR analysis was carried out on 30 
copper complexes having diverse structure. A stastically 
stable and realiable QSAR model was developed for 
understanding the DNA binding constatn Kb of copper 
complexes based on physicochemical and quantum 
chemical descriptors. Semi-empirical PM3 calculations 
was carried out on the copper complexes, to calcualte 
HOMO-LUMO energies, total energy, hydration 
energy which served as quantum chemical descriptor, 
and the physicochemcial descriptor consisted of log P 
and molar volume. LUMO energy was considered to be 
important parameters that was found to be relateto 

DNA binding constant of the complexes. GA-MLR 
based model with very good statistical fit as evident 
from R2 of 0.9076 and high value of Q2

LOO of 0.8222. 
The model was validated using external test set that 
provide good Q2 (Test) of 0.6786 and average Rm

2(Test) 
of 0.6098 confirming predictive ability of the developed 
GA-MLR model. 
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