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ABSTRACT 
Inappropriate representation of statistical significance as p value ≤0.05 is a convention in experimental biological 
research. Such convention in Medical Science research led to statistical fallacy with risk to life of people in reality. This 
convention which often ignores the sample size, compromises with the Type II error that directly confers fallacy to 
biological findings explained only on p value. One way to overcome such situation is to incorporation of effect size in the 
analysis. In this article, the need of addressing effect size in experimental research has been explained. A summary of use 
and interpretation of various measures of effect size has also been outlined.  
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1. INTRODUCTION TO P VALUE: THE GOLDEN 
POINT 

A conclusion in any experimental research eventually 
ends with a comment like “observation in A is 
significantly different from that of B (p<0.05, t- test)”.  
Such statement endorses the credibility of the experiment 
and also adds weight to the findings of the researcher. 
Statistical significance, first coined by R.A. Fisher, is 
conceptualized as the likelihood that the difference 
between two groups caused due to sampling only. Since 
its inception in 1930, statistical significance idealizes the 
practice of interpreting research findings through the 
sluice gate of rejecting the null hypothesis of 
experimental research or failing to reject so. Even a bit 
later, in 1933 J. Neyman and E. Pearson‟s addition of 
“statistical hypothesis” to overcome the subjective 
practice of R.A. Fisher‟s statistical significance could not 
improve the situation. Neyman and Pearson argued that 
there are two hypothetical errors that are the major point 
of concern in statistical significance. First, rejecting the 
null hypothesis when null hypothesis is true (Type I 
error) and second, accepting null hypothesis when null 
hypothesis is false (Type II error). Statistical significance 
is conventionally judged by a p-value. The p-stands for 
„probability‟ and measures how likely it is that any 
observed difference between groups is due to chance. 
The p can take any value between 0 and 1. p-value close 
to 0 indicates that the observed difference is unlikely to 
be due to chance. On the contrary, a value close to 1 

suggests no difference between the groups except due to 
chance.   
Briefly speaking, the p-value, more or less, summarizes 
the strength of disagreement with the null hypothesis that 
the data provide for interpretation. For example, a p-
value of less than 0.05 says that chance of evidence for 
the null hypothesis, based on the data, is less than 5%. In 
biology, a p-value ≤ 0.05 is conventionally taken as 
landmark to accept that the difference is large enough to 
be „significant‟, if not, then it is „not significant‟. Thus 
over the decades the p-value of 0.05 or less has been kept 
projected as a well-accepted metric for determining the 
evidence against the null hypothesis where chance 
occurrence difference between two groups is limited to 
5% only. In other words, p value ≤ 0.05 continues to 
have acted as cut off point, hence dominating all 
experimental researches in biology. Gradually, this 
becomes a blue-eyed criterion in the meta-analysis of 
experimental research relating to most of the laboratory 
based Ph.D theses in biology, technical reports, medical 
surveys, clinical tests, Psychological analysis and most 
importantly published articles in all research journals in 
biology.  
A major challenge appeared in experimental research 
where small sample size has literally overridden the 
significant p value.  For example, Dumas-Mallet et al. [1] 
observed that studies with small sample size are very 
common in biomedical research. Such insufficiency in 
statistical requirement may have far reaching implications 
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on translation of outcome into application. Indrayan [2] 
expressed that it may jeopardize life and health of many 
patients who follow medical support from such faulty 
research outcomes. Earlier, Goodman [3], Shier and 
Tilson [4] and Cohen [5] have warned the rise of issues of 
such statistical fallacies in biomedical research. Cohen [5] 
reported that clinicians are strangely unfamiliar with a 
valid definition of p value. Citing the situation grimmer, 
Hanin [6] criticized the unawareness of researcher while 
using faulty statistical methods for analysing experimental 
data.   
Considering these reports, it seems quite clear that 
discoveries in experimental biological research as well as 
in biomedical science are mostly swinging around a 
„simpson paradox‟. We believe that (i) an error free 
methodological strategy on statistical procedure must be 
adopted not only for biomedical research, but also all 
experimental research in biology, (ii) the budding 
researchers must acquire a clear concept on how 
appropriately they can control the errors in their 
experiments and come up with reliable pedagogical 
approach and finally (iii) a basic and primary scientific 
baseline for error free analysis of data is necessary for all. 
In this review, we have tried to explain „effect size‟ as the 
second face of statistical significance, after the p value, to 
appropriately justify the null hypothesis. The article 
targeted experimental biological research, as in 
Biomedical or Pharmaceutical science, but may also be 
amalgamated to other branches of biological research. 
  
2. WHERE LIES THE GLITCH IN P-VALUE ≤ 

0.05? 
Is p-value enough for experimental research? Malley et al. 
[7], in the editorial of „Bio Data Mining‟ hinted the 
serious limitations of using only p-value in experimental 
research. Interestingly, from 1930 onwards, the 
understanding of statistical hypotheses among biologists 
was highly skewed only towards the display of p-value. 
When Neyman and Pearson [8] forwarded the concept of 
„Statisical Hypothesis‟ and corrected p-value to address 
Type I error, they also commented on Type II error that 
states the acceptance of null hypothesis when it is false. 
But this point hardly received any attention from research 
communities working in biological experiments. These 
two situations are highly complicated where, a researcher 
by adopting p≤ 0.05 rejects null hypothesis when it is 
actually true (to extent of 5%) but at the same time there 
is a compromise to maintain situation (by ignoring Type 
II error) where null hypothesis is accepted when it is 
actually false! Unfortunately, this major gap leads to the 

increasing rate of false discoveries or simply fallacy in 
biological research.  
What would be the consequence if Type II error is not 
addressed while dealing biological experiments? The 
simple answer is when Type II error is not taken care of, 
one cannot ensure that the whole exercise on Type I 
error is actually executed on a true null hypothesis (or 
not on falsely accepted null hypothesis). This is the 
reason why sole reliance on p-values hit to misreporting 
about hypothesis testing of an experiment. Jekel [9] 
objected that the ultimate identity of hypothesis testing 
seems to be confined strictly to a p value around 0.05 
that immunizes researcher for a universally undebatable 
findings, approved by this Holy Grail-p<0.05.  
A close look to p-value definition reveals that it depends 
essentially on two keys: the magnitude of the effect (in 
terms of difference) and the size of the sample. One 
would get a „significant‟ result either if the effect is very 
big (despite having a small sample) or if the sample size is 
very big (even when effect is small). So, one has to trade-
off between them before carrying out any statistical 
meta-analysis. Yocooz [10] first raised the issue of sample 
size as an essential part of planning stage in evolutionary 
and ecological research. Not only evolutionary and 
ecological research, this is true for experimental and 
laboratory based studies too. Statistically, a priori 
determination of sample size is necessary to achieve a 
desired magnitude of effect in terms of p-value. This is 
termed as Power of the test and is denoted as P. In fact, 
addressing chance of Type II error practically manages P, 
hence solving the problem of sample size. Probability of 

Type II error is denoted by β, and a value of P = 1- β ≥ 
0.8 is considered biologically fit for a statistical analysis. 
It means that under consideration of P ≥ 0.8, the 
probability of making a Type II error goes down. 
Unfortunately, in biomedical research, approximately 
50% of studies have P in 0-10% and 11-20% range [1]. 
Considering P as way to deal Type II error, a concern in 
this regard has been slowly growing among the 
researchers of experimental biology as well as in other 
allied sciences. Frequently, such concerns are selectively 
focused towards biomedical research, where researchers 
look for a more clinically relevant effect through their 
experiment or clinical trials. However, while doing that, 
it was also found that dealing with too few or too large 
samples in such experiments can mislead the statistical 
analysis part of the research [11, 12]. Vaux [13] 
emphasized that in experimental research, the numbers 
of repeats not the representative experiments, should be 
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the experimenter‟s bull‟s eye over the exhibition of 
merely a „p-value‟. Besides, in hypothesis testing, 
determination of power strengthens the analysis over the 
mere exposition of p-value. 
 

3. P AND P: ARE THEY ENOUGH? 
Statistical power obviously energizes the statistical 
outcome and p-value provides a statistical significance, 
but these may not ensure an effect on the scale of clinical 
intervention. For a large sample size, even trivial effects 
can have impressive p-values. However, whether such 
effect has a sense for the designed objective and 
experiment of the biological research is really 
questionable. To brush aside this grit, an estimate of the 
magnitude of effect, relatively independent of sample 
size, is needed. This estimate of effect or “effect size” 
depicts how strongly two or more variables are related or 
how large the difference between the groups is. For 
example, there requires hugely different sample size to 
know the effect of a drug on cancer cell line vs human 
subject. It is obvious that the expected effect sizes from a 
cell line and human subject will also greatly vary. 
However, in terms of hypothesis testing, both the cases 
might show P ≥ 0.8 and p≤ 0.05.  The principal idea 
behind the effect size is that, in some cases a small sample 
size may exert desired effect, whereas, in other cases, 
there requires certain level of sample size to obtain an 
effect.  
When the question of biological (or clinical) relevance 
comes, it actually means a change that may alter how 
decisions for a specific problem are taken [14]. By 
incorporating P and p, an effect size measure is desirable 
and accordingly interpreted, but by far its biological 
relevance may be evaded.  Although not confirmed in 
biomedical journals, during past few years there has been 
an abrupt increase of reporting and interpreting of effect 
size in several other disciplines in experimental biology 
along with p-value during presentation of statistical 
analysis. Specifically, journals from behavioral sciences, 
social sciences are emphasizing on effect size as a 
criterion of publishing data-centric articles. For example, 
the American Psychological Association (APA) Task force 
on Statistical Inference issued, “Always provide some 
effect size estimate when reporting a p-value” [15].  
By default, the bigger effects are easier to detect than 
smaller effects, and the thumb rule is that a large sample 
offers greater test sensitivity or “effect” than a small 
sample. Simply speaking, „effect size‟ circumvents this 
“effect”. A better way to grab this word “effect” is to look 
into the bell curves from the distribution of data from 

two treatments, namely A and B in Figure 1. In these bell 
curves, means of A and B for sample sizes 10, 45 and 150 
are compared. For each sample size (n), the means of A 
and B have statistically significant difference (t-test) at 
p<0.05. From the bell curves in Figure 1 of the normal 
distributions of A and B for each sample size, It is clear 
that both A and B exhibited wider overlapping portion 
for n=10 compared to n=45 and n=105. Pretty 
intuitively, if there is no overlap at all, the mean 
difference would have represented substantial effect. So 
rowing down this concept, it can be understood that 
more the overlapping, less will be the reliability of mean 
difference, even though it fulfills the conventional alpha 
level with p<0.05. Conversely, for smaller overlapping 
at same alpha level, even a minuscule difference will 
stand out as the flagship. This idea is quantified via effect 
size. So far effect size is concerned, the population A and 
B with n=10 showed less significant difference, whereas, 
the difference is meaningfully significant in case of these 
populations with n=150. 

 
Fig. 1: Overlapping of bell curves for 
distributions of two treatments, viz, A and B. 
Each treatment shows bell curves for three sample sizes 
(n) as 10 (green), 45 (red) and 150 (black, dotted) 
respectively. For each case of n, the difference between 
A and B is statistically significant (t test, p<0.05). It is 
obvious that in case of n=10, the bell curves exhibited 
wider overlapping over n=45 and 150.  
 

With this in mind, Nagakawa and Cuthill [16] elucidated 
the meaning of effect size as “relevant interpretation of an 
estimated magnitude of an effect from the effect 
statistics”. This was what they referred as biological 
importance (or biological relevance) of the effect of the 
experiment. Sullivan and Feinn [17] strongly 
recommended the effect size along with the statistical 
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significance (i.e. p value) stating that both are essential 
for readers to understand the full impact of one‟s work. 
  
4. MEASURING EFFECT SIZE 
Selecting an appropriate statistic for measuring effect size 
of a specific statistical test is not very easy. Elmore and 
Rotou [18] (cited by Huberty [19]) identified a collection 
of almost sixty such indices to measure effect size. 
However, considering the commonly used statistical test 
in experimental research, a comprehensive list of effect 
size measures has been forwarded through Table 1. This 
list categorises effect size indices into three groups 
according to the nature of statistical test and 
interpretations. These are namely- (1) effect size of 
association, (2) effect size of group difference and (3) 

effect size of group overlap [16, 19, 20]. Some of the 
popular effect size indices from the above categories have 
been picked up for clinicians in Table 1. A description on 
their use for the relevant statistical tests is also added to 
enhance reader‟s enthusiasm. 
As this paper projects to motivate the experimental 
biologists for using effect size in the context of statistical 
interpretation of biological data, the mathematical 
jargons of formulae of several effect sizes have not been 
consulted in the paper. Moreover, statistical text books 
and common statistical packages like SPSS, R, SAS do 
have decent details to all statistical formulae of these 
effect size indices. 

 

Table 1. Some of the popular effect size indices with the relevant statistical test they are used for 
 

Category Measures Description What measures/where to use 

Measures based 
on 

Association 

1.Pearson‟s correlation 
coefficient (r) 

-1<r<1 Effect of linear relationship between two 
quantitative variables(linear regression) 

2. Coefficient of 
Determination  (R2) 

0< R2<1 Effect of linear relationship between one outcome 
variable over the others k predictor 
variables(multiple regression) 

3. Adjusted R2    A correction over R2 
   Can be –ve/+ve 

Measures if the additional explained variance to 
an added predictor is enough in the multiple 
regression model 

4. Correlation ratio 

(2) 
0<<1 Effect of nonlinear relationship between the 

grouping variable and the outcome variable in 
multiple data array problem (One way ANOVA) 

5. Partial 2 Partial 2>2 In n-way ANOVA, measures the effect of one 
predictor variable when effect of other 
independent variables and interactions parallelly 
sorted out from outcome variable 

6.  2  Alternative to 2 

  has lesser bias than 2 

  -1<<1 

One way ANOVA/n-way ANOVA when sample 
size is small 

7. Biserial r and 2 

 

Special case of Pearson‟s r 

and 2 

 

Measures the relationship between a continuous 
variable and a dichotomous variable 

8. Yule‟s Q -1<Q<1 Measures degree of relationship between two 
dichotomous (nominal) variables 

9. Odd‟s ratio  Mostly used effect size 
measure in epidemiology 
 Similar to Q 

Measures degree of relationship between two 
dichotomous (nominal) variables. 
 

10.  
Cramer‟s V [26] 
 

0<V<1 Measures the association between one nominal 
variable with another nominal/ordinal variable 
having more than two categories. 

Continued… 
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11. Generalized odd‟s 
ratio [27]  

 Association between two ordinal variables 

Measures based 
on Group 

difference 

1. Cohen‟s d*  D=  where 

and   are means of 
1st group and 2nd group 

respectively,  and  
are variances of 1st group 
and 2nd group 
 

 Effect of mean difference in two groups with 
equal sample size and equal variances 
(homogeneity) 

2. Hedges‟ g* [28] 
 

Modified version of 
Cohen‟s d where mean 
difference is divided by 
pooled standard deviation  

 

Effect of mean difference in two groups having 
small sample size/unequal sample size 

3. Glass‟s *[29] 
 

=  where 

SDcontrol is standard 
deviation of control group 

Effect of mean difference in two groups having 
unequal  variances (heterogeneity) 

4. Cohen‟s f   Variability of the group 
means relative to a 
common standard 
deviation 

  =  

Effect of mean difference in multiple groups 

5. Cohen‟s d for 
proportion 

Simple difference of 
proportions 

Effect of mean difference in two dichotomous 
populations 

6. Kendall‟s W Alternative to  

0<W<1 

Effect size measure in nonparametric ANOVA 
(Friedman Test) 

*Mathematical formulae are provided for just in case of manual exercise as they are most widely used effect size measures. 
 

5. GROUP OVERLAP INDICES 
Besides measure of group difference, effect size between 
groups can also be understood through the overlapping 
portion under study. Quite intuitively, irrespective of p 
value, greater overlap means less effective mean 
difference. Keeping this concept of group overlap in 
mind, Kraemer and Andrews [21] suggested an effect size 
index that corresponds to the proportion of units in one 
group that are less than the median score of the others. 
Later on, a more detailed idea of group overlap indices 
idea is given by Huberty and Homes [22]. These types of 
indices are very much subject specific and hence omitted 
from the present discussion eyeing to biological meta 
analysis. 
 
 
 

 

6. SMALL, MEDIUM AND LARGE EFFECT 
This is, indeed the most meaningful part in effect size 
analysis. In addition to gauge the effect of one variable to 
another, effect sizes can be useful for categorizing the 
intensity of effect-small, medium and large. For example, 
if Cohen‟s d is 0.2, we could cite the interpretation of 
effect size as small effect. That is, if in a clinical 
experiment the mean difference between two treatments 
differs by 0.2 standard deviation or less, the difference is 
trivial even if it is statistically significant as projected by 
p-value. The following table reflects a succinct summary 
on the scale of effects for different effect size measures. 
However, the interpretation of effect size based on the 
scale provided in Table 2 is only indicative in nature. A 
researcher has to be very careful while following these 
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thumb rules, as these may not be always very helpful in 
interpreting effect size [23]. Thompson [24] noted, “if 
people interpreted effect sizes (using fixed benchmarks) 

with the same rigidity that α=0.05 has been used in 
statistical testing, we would merely be being stupid in 
another metric”. Researchers must not ignore the fact 

that the effect size acts as an associative measure to p-
value, to differentiate between an effect with no effect or 
more effect with less effect. During data analysis, p-value 
and effect size might be found jointly; if the p-value is 
small and effect size is substantial, then only the presence 
of real effect would be established. 

Table 2. Scale (small, medium, large) of different measures of effect size 
 

Measure small medium large Ref 

Cohen‟s d** 0.20 0.50 0.80 [30] 

Cohen‟s f2 0.10 0.25 0.40 [30] 

Hedges‟ g 0.20 0.50 0.80 [31] 

Glass ∆ 0.20 0.50 0.80 [30] 

Pearson‟s r 0.10-0.30 0.30-0.50 0.50-0.70 [32] 

Cramer‟s V 0.10-0.20 0.20-0.40 0.60-0.80 [33] 

Cramer ɸ 0.10-2.0 0.20-0.40 0.60-0.80 [33] 

R2 (MR)*** 0.0196  0.130 0.260 [30] 

ɳ2 1% 10% 25% [34] 

ω2 
0.01 0.06 0.15 [35] 

0.01 0.059 0.138 [11] 

Biserial r & ɳ2             Same as Pearson‟s r and ɳ2 

OR 
1.5 2.5 4.0 [36] 

1.68 3.47 6.71 [37] 
 

**Sawilosky [38] proposed three more extended scale for Cohen’s d. These are 0.01 (very small), 1.20 (Very large) and 2.0 (Huge). 
***MR= multiple linear regression 
 

7. ADJUSTING EFFECT SIZE 
Although effect size measures are preferred for every 
statistical analysis, these are most often miscalculated on 
small sample size. Nagakawa and Cuthill [16] mentioned 
that such biasness is relatively large when sample size (n) 
is below 20 or <10 in each group. This leads to very 
serious situation for biologists, since some areas of 
experimental biology deal with fairly low sample size, as 
low as 4-6. Dumas Mullet et al. [1] reported that in 
biomedical sciences, approximately 50% of studies have 
the statistical power ranging between 0-10% or 10-20%. 
In such situation, addressing only the effect size may not 
be sufficient. Hedges and Olkin [25] proposed the 
following modification to overcome such biasness. 

   

Where,  and  are sample sizes of the two groups 

compared, dunbiased = Hedges‟ g and dbiased = Cohen‟s d. 
However, a large sample size of at least more than 20 is 
preferred over this adjustment. Besides the above 
adjustment, in case of low sample size, Confidence 
Interval (CI) may also be devised to quantify the „margin 

of error‟ in proposed effect size measure. A 95% 
confidence interval for an effect size d, under normality 
assumption, is given by  

(d-1.96 σd, d+1.96 σd)  where σd =  

and  being the first and second sample size 

respectively. If this confidence interval includes zero, the 
effect size (Cohen‟s d) is not statistically significant at 5% 
level of significance. On the other hand, if zero falls 
outside the interval result the effect size is significant. 
Apart from the above-mentioned bias, the sensibility of 
effect size measures gets influenced by few other 
limitations. The formulation of effect size works fairly on 
the assumptions that both the control and treatment 
groups have a Gaussian distribution, i.e., the distribution 
looks “bell shaped”. Obviously, if this assumption is not 
true then the interpretation may be altered. Another 
factor that can affect an effect size is the reliability of the 
measurement on which it is based. While interpreting an 
effect size, it is therefore important to know the 
reliability of the measurement from which it was 
calculated. 
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8. CONCLUSION 
While performing statistical data analysis in experimental 
research, like in biomedical science, it is expected to 
avoid over reliance on higher levels statistical methods 
since biological systems do not always speak through 
„numbers‟ and are overtly unpredictable. The variability 
in methods among the experimental researchers in 
biology further adds to such unpredictability. At the same 
time, working with exceptionally low sample size (e.g. 
n=3, 4) or so is another flip side of experimental 
research in laboratory and identified as a common cause 
of fallacy in biological research [13]. With a very small 
sample size the actual effect is never expected to be 
fathomed since chance of Type II error shoots high. 
Consequently, the whole part of the analysis turns flimsy. 
Reporting appropriate effect size will not only minimize 
the possibility of such statistical dilemma but also 
produce more relevance to clinical significance of a 
biomedical test. This paper, we believe, will also serve as 
beginners‟ stimuli towards the wide documentation of 
effect size while presenting the statistical analysis in 
experimental research in biology. Indirectly, this practice 
booms up more meaningful data exploration in 
experimental research. No matter whatever inferential 
statistical approaches (e.g. Bayesian etc) replace the 
traditional hypothesis technique in future, effect size 
estimation always sustains its clarity in unraveling 
biological importance to a specific experiment. 
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