

Journal of Advanced Scientific Research

ISSN
0976-9595
Research Article

Available online through http://www.sciensage.info/jasr

Anti-oxidant Activity of 2-hydroxyacetophenone Chalcone

Shaifali Singha*, P.K. Sharmaa, Nitin Kumara, Rupesh Dudhe a,b

^aDepartment of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, NH-58, Baghpat Bypass Crossing, Meerut (U. P.) India-250005.

^bUttarakhand Technical University Government Girls Polytechnic, Dehradun (Uttarakhand).

*Corresponding Author: singhshaifali123gmail.com

ABSTRACT

The novel series of chalcone was synthesized by 2-hydroxyacetophenone and substituted aldehyde. The structure of the synthesized compound was elucidated by melting point, retention factor, I.R. spectroscopic technique, ¹H NMR and elemental analysis. A series of various substituted chalcone were evaluated for *in-vitro* anti-oxidant activity by 2, 2-diphenyl-1-picrylhydrazyl method. Among the entire synthesized compound IIf showed the most potent anti-oxidant activity and the other derivatives like IId, IIe, IIg, IIk and IIm was showed mild anti-oxidant activity.

Keywords: Chalcone, 2-hydroxyacetophenone, substituted aldehyde, anti-oxidant activity, 2, 2-diphenyl-1-picrylhydrazyl.

1. INTRODUCTION

Chalcones are condensed products of substituted aromatic with simple or various substituted acetophenone in the presence of alkali [1]. It is the well known intermediates for synthesizing various derivatives of heterocyclic compounds. Chalcones are aromatic compound in which two aromatic rings are linked by a three carbon α , β -unsaturated carbonyl system. IUPAC name of chalcone is 1, 3-diphenyl-1, 2-propene-1-ene, in this, it possesses conjugate double bonds and a delocalized II electron on both benzene ring [2].

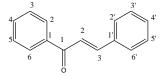


Figure 1: Structure of Chalcone

Compounds with the backbone of chalcone possesses various biological activities such as anti-microbial [3], anti-inflammatory [4], analgesic [5], anti-ulcerative [6], immune-modulatory [7], antimalarial [8], anti-cancer [9], anti-viral [10], anti-leishmanial [11], anti-oxidant [12], anti-tubercular [13], anti-hyperglycemic [14] etc. A compound having anti-oxidant activity prevents and counteracts the damage of the human tissue by the normal effects of physiological oxidation [15]. Presence of the reactive keto group and the vinylenic group in the chalcone and their analogues possesses the antioxidant activity [16]. Compounds that associated with the antioxidant properties are hydroxyl and phenyl group. Oxidative stress which is caused by the free radical damage is help to deal with the antioxidants [17]. ROS (Reactive Oxygen Species) and RNS (reactive nitrogen species), contribute to tissue injury and also in the pathogenesis in asthma, burns and in rheumatisms [18]. DPPH is the most stable free radical with an unpaired of electron at nitrogen atom on a nitrogennitrogen bridge. DPPH assay were especially useful to assay concurrently antioxidant activity of each compound [19, 20].

Reaction of DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical with the most reactive oxygen species which shows that in most of the reaction hydrazine is the major product in the DPPH, besides the nitro derivatives in the DPPH.

Figure 2: Chemical structure of DPPH radical

Mechanism of Chalcone:

$$Ar'$$
 CH_2
 Ar'
 Ar'
 Ar'
 Ar'
 $Chalcone$
 Ar
 Ar'
 Ar'
 Ar'
 Ar'
 Ar'
 Ar'
 Ar'
 Ar'
 Ar'

Figure 3: Mechanism of Chalcone

2. MATERIALS AND METHODS

All reagents and solvents were used as obtained from the supplier. Melting points were determined by using digital melting point apparatus in melting point capillaries and are uncorrected. The purity of the compounds were checked by TLC on silica gel G plates using ethyl acetate and n-hexane (4:6) solvent system, the spots were identified by iodine chamber and U.V lamp used as a visualizing agents. IR spectra were recorded by using KBr pellets on a FTIR Spectrophotometer (Shimadzu 8400S, 4000-400 cm⁻¹). Chemicals were purchased from the SIGMA and CDH and are supplied as "used without further purification".

3. GENERAL PROCEDURE FOR THE PREPARATION OF SUBSTITUTED CHALCONE DERIVATIVES

The substituted chalcone derivatives were prepared by stirring a mixture of substituted acetophenone (0.01 mol) and substituted aromatic benzaldehyde (0.01 mol) in adequate amount of ethanol for 3-4 hrs in presence of 40% NaOH. The reaction mixture was then allowed to stand for 1 hr. The precipitated product was filtered and purified by recrystallization from ethanol.

- 3.1 Synthesis of 3-(2-fluorophenyl)-1-(2-hydroxyphenyl) prop-2-en-1-one (IIa): It was obtained from the reaction between 2- fluoro benzaldehyde and o-hydroxy acetophenone. Mol. formula: C₁₅H₁₁FO₂, Colour: Light green, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m p.: 56-58°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.94, Percentage yield: 79.92%, IR (KBr, cm⁻¹): 3442.70 (OH str.), 1610.45 (Ar C=C), 1384.79 (Ar C-O), 754.12 (Ar C-H bend), 1265.22 (C-F), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.41-8.18 (d, 2H, CH), 6.88-7.34 (m, 8H, Ar-H), 4.9 (s, 1H, OH), Elemental analysis of C₁₅H₁₁FO₂ (242.25): Calcd. C, 74.37; H, 4.58; F, 7.84; O, 13.21.
- **Synthesis** 3-(4-fluorophenyl)-1-(2-3.2 of hydroxyphenyl) prop-2-en-1-one (IIb): It was obtained from between 4-fluorobenzaldehyde reaction hydroxyacetophenone. Molecular formula: C₁₅H₁₁FO₂, Colour: light yellow, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 46-48°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.96, Percentage yield: 53.69%, IR (KBr, cm⁻ ¹): 3415.70 (OH str.), 1602.74 (Ar. C=C), 1348.15 (Ar. C-O), 752.19 (Ar. C-H bend), 1108.99 (C-F), ¹HNMR (CDCl₃- d_6 , δ , ppm): 7.52-7.82 (d, 2H, CH), 6.88-7.62 (m, 8H, Ar-H), 4.9 (s, 1H, -OH), Elemental analysis of C₁₅H₁₁FO₂ (242.25): Calcd. C, 74.37; H, 4.58; F, 7.84; O, 13.21.
- 3.3 Synthesis of 3-(2,4-difluorophenyl)-1-(2-hydroxyphenyl) prop-2-en-1-one (IIc): It was obtained from the reaction between 2,4-dihydroxy benzaldehyde and o-hydroxy acetophenone. Mol. formula: C₁₅H₁₀F₂O₂, Colour: Light yellow, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m.p.: 46-48°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.91, Percentage yield: 79.92%, IR (KBr, cm⁻¹): 3415.70 (OH str), 1602.74 (Ar C=C str), 1348.15 (Ar C-O), 1072.35 (C-F), 696.25 (Ar C-H bend), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.43-8.10 (d, 2H, CH), 6.89-7.35 (m, 8H, Ar-H), 4.9 (s, 1H, -OH). Elemental Analysis of C₁₅H₁₀F₂O₂ (260.24): Calcd. C, 69.23; H, 3.87; F, 14.60; O, 12.30.

- **Synthesis** 1-(2-hydroxyphenyl)-3-(2-3.4 of methoxyphenyl) prop-2-en-1-one (IId): It was obtained from reaction between 2-methoxybenzaldehyde hydroxyacetophenone. **Mol.** formula: C₁₆H₁₄O₃, Colour: Yellowish, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 60-62°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.71, Percentage yield: 70%, IR (KBr, cm⁻¹): 3529.49 (OH str), 1612.38 (Ar C=C str), 1355.86 (Ar C-O), 684.68 (Ar C-H bend), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.33-8.02 (d, 2H, CH), 6.62-7.33 (m, 8H, Ar-H), 4.9 (s, 1H, -OH), 3.74 (t, 3H, -OCH₃). Elemental Analysis of C₁₆H₁₄O₃ (254.28): Calcd. C, 75.57; H, 5.55; O, 18.88.
- 3.5 Synthesis of 1-(2-hydroxyphenyl)-3-(4-methoxyphenyl) prop-2-en-1-one (IIe): It was obtained from the reaction between 4-methoxybenzaldehyde and o-hydroxyacetophenone. Mol. formula: C₁₆H₁₄O₃, Colour: Light yellow, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 68-70°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.83, Percentage yield: 34.60%, IR (KBr, cm⁻¹): 3446.56 (OH str.), 1608.52 (Ar. C=C), 1350.08 (Ar. C-O), 754.88 (Ar C-H bend), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.76-7.54 (d, 2H, CH), 6.67-7.53 (m, 8H, Ar-H), 4.9 (s, 1H, -OH), 3.72 (t, 3H, -OCH₃). Elemental Analysis of C₁₆H₁₄O₃ (254.28): Calcd. C, 75.57; H, 5.55; O, 18.88.
- 3.6 Synthesis of 1-(2-hydroxyphenyl)-3-(2, 4-dimethoxyphenyl) prop-2-en-1-one (IIf): It was obtained from the reaction between 2, 4-dimethoxybenzaldehyde and o-hydroxyacetophenone. Mol. formula: $C_{17}H_{16}O_4$, Colour: Yellowish, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 110-112°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.66, Percentage yield: 57.30%, IR (KBr, cm⁻¹): 3446.56 (OH str.), 1604.66 (Ar C=C), 1379.01 (Ar C-O), 756.64 (Ar C-H bend), ¹HNMR (CDCl₃- d_6 , δ , ppm): 7.56-8.23 (d, 2H, CH), 6.89-7.30 (m, 7H, Ar-H), 4.9 (s, 1H, -OH), 3.69 (m, 6H, -OCH₃). Elemental Analysis of $C_{17}H_{16}O_4$ (284.31): Calcd. C, 71.82; H, 5.67; O, 22.51.
- 3.7 **Synthesis** of 3-(2-chlorophenyl)-1-(2hydroxyphenyl) prop-2-en-1-one (IIg): It was obtained from between 2-chlorobenzaldehyde reaction hydroxyacetophenone. **Mol. formula:** C₁₅H₁₁ClO₂ **Colour:** Light yellow, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, Melting point: 80-82°C, Solvent system: Ethyl acetate: n-Hexane (3:7), R_f value: 0.82, Percentage yield: 46.56%, IR **(KBr, cm⁻¹):** 3406.05 (OH str), 1604.66 (Ar C=C str), 1384.79 (Ar C-O), 765.69 (C-Cl), 717.47 (Ar C-H bend), ¹**HNMR (CDCl**₃d₆, δ, ppm): 7.30-8.10 (d, 2H, CH), 6.90-7.62 (m, 8H, Ar-H), 4.9 (s, 1H, -OH). Elemental Analysis of C₁₅H₁₁ClO₂ (258.7): Calcd. C, 69.64; H, 4.29; Cl, 13.70; O, 12.37.
- 3.8 Synthesis of 3-(3-chlorophenyl)-1-(2-hydroxyphenyl) prop-2-en-1-one (IIh): It was obtained from the reaction between 3-chlorobenzaldehyde and o-hydroxyacetophenone. Mol. formula: C₁₅H₁₁ClO₂, Colour: Light yellow, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 80-82°C, Solvent system: Ethyl acetate: n-Hexane (4:6), R_f value: 0.82, Percentage yield: 65.65%, IR (KBr, cm⁻¹): 3529.49 (OH str), 1612.38 (Ar C=C str), 1355.86 (Ar C-O), 684.68 (Ar C-H bend), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.54-7.92 (d, 2H, CH),

6.82-7.61 (m, 8H, Ar-H), 4.9 (s, 1H, -OH). **Elemental Analysis of C**₁₅**H**₁₁**ClO**₂ **(258.7):** Calcd. C, 69.64; H, 4.29; Cl, 13.70; O, 12.37.

- 3.9 **Synthesis** 3-(4-chlorophenyl)-1-(2hydroxyphenyl) prop-2-en-1-one (IIi): It was obtained from reaction between 4-chlorobenzaldehyde hydroxyacetophenone. **Mol. formula:** C₁₅HS₁₁ClO₂ **Colour:** Orange yellow, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, **Melting point:** 94-96°C, **Solvent system:** Ethyl acetate: n-Hexane (3:7), R_f value: 0.82, Percentage yield: 60.29%, IR (**KBr, cm**⁻¹): 3425.34 (OH str), 1610.45 (Ar C=C str), 1352.01 (Ar C-O), 754.12 (C-Cl), 657.68 (Ar C-H bend), ¹HNMR (CDCl₃d₆, δ, ppm): 7.42-7.80 (d, 2H, CH), 6.72-7.62 (m, 8H, Ar-H), 4.9 (s,1H, -OH). Elemental Analysis of C₁₅H₁₁ClO₂ (258.7): Calcd. C, 69.64; H, 4.29; Cl, 13.70; O, 12.37.
- 3.10 Synthesis of 3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl) prop-2-en-1-one (IIj): It was obtained from the reaction between 2,4-dichlorobenzaldehyde and o-hydroxyacetophenone. Mol. formula: C₁₅H₁₀Cl₂O₂, Colour: Yellowish, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 58-60°C, Solvent system: Ethyl acetate: n-Hexane (3:7), R_f value: 0.92, Percentage yield: 30.87%, IR (KBr, cm⁻¹): 3425.34 (OH str), 1610.45 (Ar C=C str), 1352.01 (Ar C-O), 754.12 (C-Cl), 657.68 (Ar C-H bend), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.32-8.10 (d, 2H, CH), 6.89-7.36 (m, 7H, Ar-H), 4.9 (s, 1H, -OH). Elemental Analysis of C₁₅H₁₀Cl₂O₂ (293.14): Calcd. C, 61.46; H, 3.44; Cl, 24.19; O, 10.92.
- 3.11 Synthesis of 3-(2,6-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (IIk): It was obtained from the reaction between 2,6-dichlorobenzaldehyde and o-hydroxyacetophenone. Mol. formula: $C_{15}H_{10}Cl_2O_2$, Colour: Brown, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 78-80°C, Solvent system: Ethyl acetate: n-Hexane (3:7), R_f value: 0.89, Percentage yield: 71.46%, IR (KBr, cm⁻¹): 3456.07 (OH str), 1612.38 (Ar C=C str), 1346.22 (Ar C-O), 750.26 (C-Cl), 636.95 (Ar C-H bend), 1 HNMR (CDCl₃- d_6 , δ , ppm): 7.38-8.10 (d, 2H, CH), 6.89-7.62 (m, 7H, Ar-H), 4.9 (s, 1H, -OH). Elementa Analysis of $C_{15}H_{10}Cl_2O_2$ (293.14): Calcd. C, 61.46; H, 3.44; Cl, 24.19; O, 10.92.
- 3.12 Synthesis of 1-(2-hydroxyphenyl)-3-(2-nitrophenyl)prop-2-en-1-one (III): It was obtained from the reaction between 2-nitrobenzaldehyde and o-hydroxyacetophenone. Molecular formula: C₁₅H₁₁NO₄, Colour: Light brown, Solubility: Ethyl alcohol, Methanol, Chloroform, DMSO, m. p.: 58-60°C, Solvent system: Ethyl acetate: n-Hexane (3:7), R_f value: 0.76, Percentage yield: 79.58%, IR (KBr, cm⁻¹): 3398.34 (OH str). 1685.67 (Ar C=C str), 1384.79 (Ar C-O), 1311.50 (C-N=O), 765.69 (Ar C-H bend), ¹HNMR (CDCl₃-d₆, δ, ppm): 7.60-8.42 (d, 2H, CH), 6.88-8.11 (m, 8H, Ar-H), 4.9 (s, 1H, -OH). Elemental Analysis of C₁₅H₁₁NO₄ (269.25): Calcd. C, 66.91; H, 4.12; N, 5.20; O, 23.77.
- 3.13 Synthesis of 1-(2-hydroxyphenyl)-3-(4-nitrophenyl) prop-2-en-1-one (IIm): It was obtained from the reaction between 4-nitrobenzaldehyde and o-hydroxyacetophenone. **Molecular formula:** C₁₅H₁₁NO₄, **Colour:** Brown, **Solubility:** Ethyl alcohol, Methanol, Chloroform, DMSO, **m. p.:** 78-80°C,

Solvent system: Ethyl acetate: n-Hexane (3:7), $\mathbf{R_f}$ value: 0.89, **Percentage yield:** 35.23%, **IR (KBr, cm⁻¹):** 3444.63 (OH str), 1600.81 (Ar C=C str), 1384.79 (Ar C-O), 1340.43 (Ar NO₂), 692.40 (Ar C-H bend), ¹**HNMR (CDCl₃-d₆, \delta, ppm):** 7.80-8.02 (d, 2H, CH), 6.90-8.12 (m, 8H, Ar-H), 4.9 (s, 1H, -OH). **Elemental Analysis of C**₁₅**H**₁₁**NO**₄ (269.25): Calcd. C, 66.91; H, 4.12; N, 5.20; O, 23.77.

4. ANTIOXIDANT ACTIVITY

DPPH (2,2-Diphenyl-1-picryl hydrazyl) Scavenging Activity:

Antiradical activity of compounds was performed by DPPH model. Stock solution of DPPH (1.3 mg/ml) in methanol was prepared. Stock solution of DPPH solution 100 μl was added in 3ml of methanol and absorbance was recorded at 516nm. The various concentrations of compounds (100,200,400 and 600 $\mu g/ml$) were prepared. All sample solutions 1 ml each is diluted to 3 ml and 100 μl of stock solution of DPPH was added then absorbances were recorded at 516 nm.

Percentage inhibition = $[Control - Test] / Control \times 100$

5. REACTION SCHEME

R'= F, Cl, OCH₃, NO₂

Scheme 1: Reaction Scheme for synthesizing chalcone

Table 1: Physical parameters of synthesized compounds (IIa-IIm)

S.No.	Compound ^a	R'	Molecular Formula	M. Wt.	R _f value ^b	% Yield ^c	m.p. (°C)
01.	IIa	F	$C_{15}H_{11}FO_2$	242.25	0.94	53.69%	56-58°C
02.	ПР	——F	$C_{15}H_{11}FO_2$	242.25	0.96	79.92%	46-48°C
03.	IIc	F	$C_{15}H_{10}F_2O_2$	260.24	0.90	70%	60-62°C
04.	IId	H ₃ CO	$C_{16}H_{14}O_3$	254.28	0.71	75.07%	120-122°C
05.	IIe	——————————————————————————————————————	$C_{16}H_{14}O_3$	254.28	0.83	34.60%	68-70°C
06.	IIf	H ₃ CO ————————————————————————————————————	$C_{17}H_{16}O_4$	284.31	0.66	57.30%	110-112°C
07.	IIg	CI	$C_{15}H_{11}ClO_2$	258.7	0.82	46.56%	80-82°C
08.	IIh	CI	$C_{15}H_{11}ClO_2$	258.7	0.78	65.65%	60-62°C
09.	Iii	——CI	$C_{15}H_{11}ClO_2$	258.7	0.95	60.29%	76-78°C
10.	IIj	CI	$C_{15}H_{10}Cl_2O_2$	293.14	0.92	30.87%	58-60°C
11.	IIk	CI	$C_{15}H_{10}Cl_{2}O_{2}$	293.14	0.89	71.46%	48-50°C
12.	III	O ₂ N	$C_{15}H_{11}NO_4$	269.25	0.79	79.58%	78-80°C
13.	IIm	-NO ₂	$C_{15}H_{11}NO_4$	269.25	0.76	35.23%	58-60°C

^aProducts were characterized by IR, ^cSynthesized yields.

6. RESULT AND DISCUSSION

From these data a preliminary result can be drawn for the synthesized compounds. A novel series of compounds (IIa-IIm) were synthesized and characterized. And all the above synthesized compounds were tested for anti-oxidant activity using DPPH method. Among the tested compounds IIf shows the most potent activity while the other like IId, IIe, IIg, IIk and IIm was found to be moderately mild active.

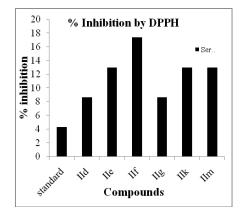


Table 2: Anti-oxidant Activity of synthesized compounds (IIa-IIm) by DPPH Method.

S.No.	Compound Name	% inhibition		
01.	Standard	4.35		
02.	IIa	0		
03.	IIb	0		
04.	IIc	0		
05.	IId	8.7		
06.	IIe	13.04		
07.	IIf	17.39		
08.	IIg	8.7		
09.	IIh	0		
10.	Iii	0		
11.	IIj	0		
12.	IIk	13.04		
13.	III	0		
14.	IIm	13.04		

7. CONCLUSION

Chalcones possess various biological activities like anti-bacterial, anti-malarial, anti-fungal, anti-microbial etc. When these chalcone moieties screened for the anti-oxidant activity they showed good antioxidant property. Among these derivatives of chalcones 2-methoxy, 4-methoxy, 2, 4-dimethoxy, 2, 4-dichloro and 4-nitrobenzaldehyde substituted derivatives of chalcone showed the good anti-oxidant activity. From these derivatives 2, 4-dimethoxybenzaldehyde substituted derivative of chalcone showed the most potent anti-oxidant activity. And the other derivatives like 2-methoxy, 4-methoxy, 2, 4-dichloro and 4-nitro substituted chalcone shows moderately mild anti-oxidant activity.

8. REFERENCES

- 1. Jayapal MR, Sreedhar NY. Inter J Pharm Pharm Sci, 2011, 3(1); 127-129.
- 2. Patil CB, Mahajan SK, Katti SA. J Pharm Res, 2009, 3(1); 11-22.
- 3. Hsieh HK, Tsao LT, Wang JP. J Pharm Pharmacol, 2000, 52(2); 163-171.
- 4. Viana GS, Bandeira MA, Matos F. J Phytomed, 2003, 10; 189-195.
- Zhao LM, Jin HS, Sun LP, Piao HR, Quan ZS. Bioorg Med Chem Lett, 2005, 15(22); 5027-5029.
- Mukarami S, Muramatsu M, Aihara H, Otomo S. Biochem Pharmacol, 1991, 42(7); 1447-1451.
- 7. Liu M, Wilairat P, Go LM. J Med Chem, 44(5), 2001. 4443-4452.
- 8. Francesco E, Salvatore G, Luigi M. Phytochem, 2007, 68(7); 939-953.
- Onyilagna JC, Malhotra B, Elder M, Towers GHN. Canad J Plant Patho, 1997, 19; 133-137.
- Nielsen SF, Chen M, Theander TG, Kharazmi A. Bioorg Med Chem Lett, 1995, 5; 449-452.
- 11. Miranda CL, Aponso GLM J. Agricul Food Chem, 2000, 48; 3876-3884.
- Siva Kumar PM, Geetha Babu SK, Mukesh D. Chem Pharmaceut Bullet, 2007, 55(1); 44-49.
- Satyanarayana M, Tiwari P, Tripathi K, Srivastava AK, Pratap R. Bioorg Med Chem Lett, 2004, 12; 883-889.
- Barford L, Kemp K, Hansen M, Kharazmi A. Inter Immunopharmacol, 2007, 2; 545.
- 15. Maria J, Moa G, Mandado M. Chem Phy Lett, 2007, 446; 1-7.
- Anto RJ, Sukumaran K, Kuttan G, Rao MA. Cancer Lett, 1995, 97; 33-37.
- 17. Utpal B, Sahu A, Ali SS, Kasoju L, Singh A. Food Res Inter, 2008, 41; 1-
- 18. Bauerova K, Bezek A. J Physiol Biophys, 1999, 18; 15-20.
- 19. Bandoniene D, Murkvic, M. J Agricul Food Chem, 2002, 5; 2482-2487.
- 20. Cheng Z, Jeffrey M, Yu L. J Agricul Food Chem, 2006, 54; 7429-7436.