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ABSTRACT 
β-Carboline moieties are important structural subunits which occur as components of many biologically interesting 
molecules for antitumor activity. Quantitative structure-activity relationship (QSAR) studies have been performed on β-
carboline derivatives to explore the structural necessities for antitumor activity. 2D QSAR studies were done using 
VALSTAT drug designing module to explain the structural requirements for the anti-tumor activity. The 2D-QSAR was 
performed using the Step Wise K Nearest Neighbour Molecular Field Analysis [(SW) kNNMFA] technique with the 
partial least-square (PLS) method on a database. Obtained best 2DQSAR model having high predictive ability with q2 
=0.743, r2= 0.721, pred_r2 =0.708 and standard error =0.346, explaining the majority of the variance in the data with 
partial least square (PLS) components. The results of the present study may be useful on the designing of more potent 
compounds as antitumor drugs.  
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1. INTRODUCTION  
Synthetic and naturally occurring compounds containing 
the β-carboline nucleus possess a large spectrum of 
important pharmacological properties, including potent 
antitumor activity [1-5]. The potential of β-carboline 
compounds as anticancer agents have stimulated studies 
into their synthesis and structure-activity-relationship 
(SAR) with an aim to the improvement of their 
antitumor potential [6-8]. SAR studies on a variety of 
synthetic β-carboline derivatives have demonstrated that 
the introduction of appropriated substituents into 
position-1,-2,-3 and -9 of the β-carboline skeleton 
resulted in more potent antitumor derivatives, with 
reduced toxicity. The anticancer mode of action of these 
alkaloids has been also widely investigated [9-11]. 
Multiple mechanisms, such as DNA intercalation and 
inhibition of Topoisomerases I and II, IkB kinase (IKK), 
cyclin-dependent kinases (CDKs), mitogen activated 
protein kinase-activated protein kinase 2 (MK-2), polo-
like kinase (PLK1) and kinesin-like protein Eg5 were 
pointed out from these investigations [12-14].  
 

2. MATERIAL AND METHODS 
A series of -carboline derivatives was selected from a 
reported article which presented the synthesis of novel 

derivatives of this compound and tested their anti-
cancer potential against various cancer cell lines [15, 
16]. Structure build-up, physico-chemical property 
determination, and sequential multiple regression 
analysis was performed on the reported series [17]. 
  
2.1. Biological Activity Calculation 
The observed potency (IC50 values) against renal cancer 
cell line (786-O) for all 26 compounds were altered 
from micromolar concentration to molar concentration 
and subsequently these values for renal cell lines from 
the reported series [N-(substituted-benzylidene) β-
carboline-3-carbohydrazide derivatives [8] were used to 
derive the biological activity values in the form of (Log 
1/IC50). Although, the series presented a total of 51 
compounds, but about twenty-five compounds which 
were shown having the IC50 values greater than 100 
micro-molar concentration (>100), were eliminated 
because their IC50 values were not exactly defined. 
These structures along with their activity (Log 1/IC50) 
values are mentioned in the table 1. 

 
2.2. Structure Building & Energy Minimization 
The structures of the remaining twenty-six compounds 
were fabricated by means of Chemdraw Ultra 7.0.1 of 
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Chem-office Ultra 7.0.1 suite software, which is a 
product of Cambridge soft corporation, U.S.A. These 
structures were then saved in MDL (.mol) format which 
is followed by energy minimization using Chem3D ultra 
7.0.1 by the means of MM2 (Molecular Mechanics) 
force fields and followed by MOPAC-Closed shell (AM-
1) pro force fields using 0.100 as root mean square 
gradient. 
 
2.3. Physico-Chemical Property Calculation 
The properties of all these compounds were 
simultaneously computed using Chem3D ultra. 
Subsequently, all these calculated properties were 
arranged in Microsoft Excel 2007 sheet and subjected to 
the statistical software VALSTAT. The different 
properties of the molecules computed were log P, 
connolly accessible area,  connolly molecular area, 
connolly solvent accessible volume, molecular weight, 
ovality, principle moment of inertia X, Y, Z, molecular 
refractivity, partition coefficient, bending energy, 
charge-dipole energy, dipole-dipole energy, molecular 
topological index, shape attribute, shape coefficient, 
stretch energy, stretch-bend energy, bending energy, 
torsion energy, van der waal forces, sum of valence 
degrees. 
 
2.4. QSAR Model Development 
Dataset of compounds was separated into training and 
test set which was randomly carried out by VALSTAT 
software. The compounds which were selected by the 
software for training set were 3, 8, 11, 12, 13, 15, 16, 

21, 22, 23, 26, 27, 31, 34, 38, 42, 44, 47, 48, 53, 54 
and for test set were 4, 6, 20, 33, 46. The training set 
of compounds was used for development of suitable 
models whereas the test set of compounds was used for 
cross validation of the various models developed 
through training set.  
The QSAR model was fabricated using Sequential Linear 
Multiple Regression method. An Inter-Correlation 
matrix between all parameters was developed and it is 
mentioned in the table 2. The observed, calculated, 
predicted and residual activity values for training set of 
compounds are mentioned in the table3. Fig. 1 shows a 
graph between experimental and calculated values of 
training set of compounds. Fig. 2 shows graph between 
predicted and experimental values of training set 
compounds. The predicted, experimental and predicted 
residual activity for test set of compounds is given in 
table 4. Fig. 3 shows graph between predicted and 
experimental values of test set compounds.  
Model Validation: The developed models were 
validated using following methods- 

 External Validation 

 Internal Validation (Leave-one-out method) 
The Cross-validated regression coefficient value was 
calculated by the following formula. 

 

Where PRESS = predicted residual sum of squares,  
Zi = activity for training set,  
Zm = mean observed value, corresponding to the mean 
of the values for each cross-validation group. 

 

 
 

Fig. 1: Graph between experimental and calculated activity values for training set of compounds 
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Fig. 2: Graph between experimental and predicted activity values for training set of compounds 
 

 
 

Fig. 3: Graph between experimental and predicted activity values for test set of compounds 
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Table 1: 3-(Carbohydrazidesubstituted) - β-carboline derivatives with their experimental activities 

 
Table 2: Inter-Correlation matrix amongst descriptors 

 

Cpd R1 R2 R3 BA 
3 3-NO2 C6H5 H 5.425 
4 3-NO2 4-N(CH3)C6H5 H 7.398 
6 3-NO2 2-ClC6H5 H 4.769 
8 4-OCH3 C6H5 H 4.027 

11 4-OCH3 2-ClC6H5 H 5.560 
12 4-OH 4-OCH3C6H5 H 4.208 
13 4-OH C6H5 H 5.365 
15 4-OH 4-NO2C6H5 H 5.019 
16 4-OH 2-ClC6H5 H 5.492 
20 H 4-NO2C6H5 H 4.527 
21 H 2-ClC6H5 H 5.665 
22 4-NO2 4-OCH3C6H5 H 4.851 
23 4-NO2 C6H5 H 4.524 
26 4-NO2 2-ClC6H5 - 5.560 
27 4-OCH3 Cyclohexyl - 4.731 
31 4-OH Cyclohexyl - 4.825 
33 4-NO2 Cyclohexyl - 4.138 
34 4-OCH3 Cyclohexyl - 4.610 
38 2-Cl Cyclopentyl - 4.013 
42 2-Cl CH3 - 4.933 
44 H CH3 CH3 4.794 
46 3-OH, 4-OCH3 CH3 CH3 4.155 
47 4-OH CH3 CH3 4.615 
48 4-N(CH3)2 CH3 CH3 4.576 
53 3-NO2 4-N(CH3)2C6H5 - 5.906 
54 4-OCH3 C6H5 - 5.857 
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Table 3: Experimental, Calculated, Predicted activity values for training set compounds 
Compound Observed Calculated Residual Predicted Pred_Residual 

3 5.42481 5.45187 -0.02706 5.46998 -0.045168 
11 5.5986 5.34112 0.257479 5.30671 0.291889 
12 4.20775 4.69608 -0.48833 4.77606 -0.568312 
13 5.36452 5.12146 0.243056 5.10425 0.260266 
15 5.01863 4.99608 0.022554 4.98876 0.029874 
16 5.49214 5.4208 0.071344 5.41219 0.079954 
21 5.66555 5.77724 -0.11169 5.81323 -0.147684 
22 4.85109 4.66209 0.188999 4.63038 0.220709 
23 4.52462 5.01469 -0.49007 5.13963 -0.615011 
26 5.56067 5.37762 0.183047 5.33636 0.224307 
27 4.73166 4.82166 -0.09 4.83041 -0.098754 
31 4.82507 4.84394 -0.01887 4.8452 -0.020132 
38 4.01305 4.04024 -0.02719 4.06502 -0.051971 
42 4.93293 5.20844 -0.27551 5.22993 -0.297001 
44 4.79425 4.64326 0.150994 4.61525 0.179004 
47 4.61475 4.30385 0.310901 4.22267 0.392081 
48 4.57659 4.59239 -0.0158 4.59421 -0.01762 
53 5.90658 5.92131 -0.01473 5.93595 -0.029372 
54 5.85699 5.72611 0.130875 5.6048 0.252185 

 
Table 4: Experimental, Predicted activity values of test set of compounds 

Cpd Observed Predicted Pred residual 
20 4.52739 5.36056 -0.83317 
6 4.768785 5.23678 -0.467995 
4 7.39794 5.48049 1.91745 

33 4.137869 4.71912 -0.581251 
46 4.154902 3.97681 0.178092 

 
3. RESULTS AND DISCUSSION 
The development of QSAR model was carried out by 
performing sequential multiple linear regression analysis 
on the selected series (Barbosa et al., 2011) to find out 
better -carboline derivative which results in the 
following models. 
BA = [3.80861(±0.57417)] + LogP [0.431076 (± 
0.101695)] +BE [-0.0376416(± 0.0165881)] +ChDi 
[0.455172(± 0.225939)] ------- (1) 
BA = [4.17537(± 0.605439)] + LogP [0.305977 (± 
0.1277)] +BE [-0.0477708(± 0.0171435)] +MTI 
[2.15155e-005 (± 1.15673e-005)] -------- (2) 
BA = [2.29594(± 0.830433)] +MOREF [0.355035 (± 
0.0783638)] +BE [-0.0683345 (± 0.0206988)] +SE            
[-0.00578236 (± 0.00299006)]    ------ (3) 
BA = [1.97921(± 0.894114)] +MWt [0.0113072 (± 
0.0025127)] +BE [-0.0685135(± 0.0208124)] +SE             
[-0.00666666(± 0.00313194)]   ------- (4) 

BA = [3.7067(± 0.598276)] +LogP [0.355948 (± 
0.117565)] +PMOIX [0.00022756 (± 0.000135149)] 
+BE [-0.0482381(± 0.0175505)] ---- (5) 
Among the above given models model number 1 
showed two compounds (compounds no. 8, compound 
no. 34) as outliers. Therefore these compounds were 
selectively taken out of the test set and the new 
optimized model (model no.6) having 19 training set 
compounds (3, 11, 12, 13, 15, 16, 21, 22, 23, 26, 27, 
31, 38, 42, 44, 47, 48, 53, 54) was generated. 
This optimized model no.6 was considered as the best 
model on the basis of significant statistical data obtained 
which has high cross validated correlation coefficient 
(Q2) value and less standard error for prediction and it is 
given as follows: 
BA = [3.72949(± 0.364258)] +LogP [0.497787(± 
0.0659259)] +BE [-0.0431053(± 0.0108995)] +ChDi 
[0.369448(± 0.143659)]         ----------- (6) 
Fraction contribution of Log P = 0.537934 
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Fraction contribution of Bending energy = -0.28221 
Fraction contribution of Charge-Dipole energy = 
0.179856 
The values for different statistical parameters obtained 
for the various models developed are given in the table 
5. An inter-correlation chart between the parameters 
used in this model is mentioned in table 6. 
Thus, it is understood that the best model (model 6) 
indicates that the biological activity is positively 

correlated with LogP and Charge-Dipole energy and 
negatively correlated with bending energy. Hence in 
order to increase the biological activity, the properties 
like LogP, and Charge-dipole energy should be 
increased, whereas bending energy which is showing a 
negative value in the equation should be decreased. 
Thus it is concluded that the biological activity will be 
increased if substituents that bring about changes in the 
molecule as stated above are affixed to it. 

 
Table 5: Statistical data for developed models 

Models N R R2 Q2 Pred_R2 SDEP SPRESS F Std. Error 
1 21 0.780 0.609 0.461 0.329 0.412 0.459 8.816 0.391 
2 21 0.773 0.597 0.440 0.259 0.420 0.467 8.404 0.396 
3 21 0.770 0.592 0.419 0.357 0.428 0.476 8.249 0.399 
4 21 0.768 0.590 0.397 0.3108 0.437 0.485 8.146 0.400 
5 21 0.764 0.585 0.407 0.406 0.433 0.481 7.975 0.403 

6* 19 0.913 0.834 0.757 0.337 0.265 0.298 25.115 0.247 
Model no 6* is the best model 
Where N = No. of compounds in the training set; R = correlation coefficient, Std. error = Standard Error for Regression; Q2 = cross validated R2; 
Pred_ R2 = Predicted R2; SPRESS - Standard error for prediction; SDEP = Standard deviation of prediction; F value = F-ratio between mean square 
regression and mean residualsquare. 
 
Table 6: Inter-Correlation between parameters used in the best MODEL 

Variables Log P BE ChDi VIF* 
Log P 1.000000   1.05795 

BE 0.212562 1.000000  1.01951 
ChDi 0.077143 0.095813 1.000000 1.0614 

VIF* = Variance Inflation Factor (VIF) 
 
4. CONCLUSION 
The best model designed exposed that the Log P values 
and Charge-Dipole energy of the molecules are 
positively associated to the biological activity whereas 
the bending energy values showed negative relationship. 
The best model developed also shows a greater control 
of Log P values and Charge-Dipole energy on biological 
activity than bending energy. Therefore, one should 
keep in mind that only those groups which impart the 
above mentioned changes must be attached to the 
molecules for escalating the biological activity. This 
study may prove to be helpful in further studies related 
with the synthesis of newer potent derivatives of β-
carboline. 
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