PROTEIN KINASES AS DRUG TARGET AGAINST TRYPANOSOMA BRUCEI
Main Article Content
Abstract
Protein kinases are the most studied proteins as drug targets against deadly disease ‘sleeping sickness. The crystal structures for the Trypanosoma brucei protein kinase A catalytic subunit isoform 1 (PKAC1) and cell division-related protein kinase 2 (CDK2) are still not known. Therefore, homology models were constructed for the two proteins, based on their known amino acid sequences. The catalytic sites of both the proteins were then compared with their respective human homologs. Except for some conformational differences, the active site of TbrPKAC1 was found to be quite similar to that of the human homolog. Therefore, TbrPKAC1 cannot be considered as a very good drug target. Whereas, in the case of TbrCDK2, along with huge conformational differences, some important differences in the structure and nature of the binding site were also noticed when compared to their human homolog. Virtual screening was performed for TbrCDK2 and selected hits were analysed for the ligand-protein interactions. This analysis showed many important variations in TbrCDK2 from human homolog, which can be further explored as potential drug target.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
2 Simarro P, Franco J, Diarra A, Postigo J, Jannin J. Research & Reports in Tropical Medicine, 2013; 4:1–6. DOI: 10.2147/RRTM.S40157.
3 Van den Bossche P, Rocque SD La, Hendrickx G, Bouyer J. Trends in Parasitology, 2010; 26(5):236–243. DOI: 10.1016/j.pt.2010.02.010.
4 Leak SGA. In: CABI Publishing. Oxford and New York. 1998, p 568.
5 Kennedy PG. Annals of Neurology, 2008; 64(2):116–126.
6 WHO. 2015.
7 Malvy D, Chappuis F. Clinical Microbiology and Infection, 2011; 17(7):986–995. DOI: 10.1111/j.1469-0691.2011.03536.x.
8 Berriman M, Ghedin E, et al. Science (New York, N.Y.), 2005; 309(5733):416–422. DOI: 10.1126/science.1112642.
9 Naula C, Burchmore R. Expert Review of anti-infective therapy, 2003; 1(1):157–65.
10 Doerig C, Meijer L, Mottram JC. Trends in Parasitology, 2002; 18(8):366–371. DOI: 10.1016/S1471-4922(02)02321-8.
11 Verica P, Margaret MH. Drugs, 2013; 73(2):101–115. DOI: 10.1007/s40265-013-0014-6.
12 Cohen P, Alessi DR. ACS Chem Biol, 2013; 8(1):96–104. DOI: 10.1021/cb300610s.Kinase.
13 Manning G, Whyte DB, Martinez R, Hunter T SS. Science, 2002; 298(5600):1912–34.
14 Parsons M, Worthey E a, Ward PN, Mottram JC. BMC genomics, 2005; 6:127. DOI: 10.1186/1471-2164-6-127.
15 Hanks SK, Quinn AM. Protein Phosphorylation Part A: Protein Kinases: Assays, Purification, Antibodies, Functional Analysis, Cloning, and Expression. Elsevier, 1991 doi:10.1016/0076-6879(91)00126-H.
16 Siman-Tov MM, Ivens AC, Jaffe CL. Gene, 2002; 288(1):65–75. DOI: https://doi.org/10.1016/S0378-1119(02)00403-1.
17 Heath S, Hieny S, Sher A. Molecular and biochemical parasitology, 1990; 43(1):133–141. DOI: 10.1016/0166-6851(90)90138-C.
18 Tu X, Wang CC. Journal of Biological Chemistry, 2004; 279(19):20519–20528. DOI: 10.1074/jbc.M312862200.
19 Doerig C. Biochimica et Biophysica Acta - Proteins and Proteomics, 2004; 1697(1–2):155–168. DOI: 10.1016/j.bbapap.2003.11.021.
20 Magrane M, Consortium UP. Database, 2011; 2011:1–13. DOI: 10.1093/database/bar009.
21 The Uniprot Consortium. Nucleic Acids Research, 2014; 43(D1):D204–D212. DOI: 10.1093/nar/gku989.
22 Gerlits O, Das A, Keshwani MM, Taylor S, Waltman MJ, Langan P, Heller WT, Kovalevsky A. Biochemistry, 2014; 53(19):3179–3186. DOI: 10.1021/bi5000965.
23 Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J. Structure, 2003; 11(11):1329–1337. DOI: 10.1016/j.str.2003.09.020.
24 Eswar N, Webb B, Marti-renom MA, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A. Comparative protein structure modeling using Modeller. 2006 doi:10.1002/0471250953.bi0506s15.Comparative.
25 Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, A S. Annu Rev Biophys Biomol Struct, 2000; 29:291–325.
26 Sali A, Blundell TL. J. Mol. Biol., 1993; 234:779–815.
27 Fiser A, Do RK, Sali A. Protein Science, 2000; 9:1753–1773.
28 Benkert P, Tosatto SC, Schomburg D. Proteins, 2008; 71(1):261–77.
29 Benkert P, Biasini M, Schwede T. Bioinformatics, 2011; 27(3):343–350. DOI: 10.1093/bioinformatics/btq662.
30 Chen VB, Bryan Arendall W, et al. Acta Crystallogr D Biol Crystallogr, 2010; 66(1):12–21.
31 Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC. Nucleic Acids Research, 2007; 35:375–383. DOI: 10.1093/nar/gkm216.
32 Cheung J, Ginter C, Cassidy M, Franklin MC, Rudolph MJ, Robine N, Darnell RB, Hendrickson W a. Proceedings of the National Academy of Sciences, 2015; 112(5):1374–1379. DOI: 10.1073/pnas.1424206112.
33 Wu SY, McNae I, Kontopidis G, McClue SJ, McInnes C, Stewart KJ, Wang S, Zheleva DI, Marriage H, Lane DP, Taylor P, Fischer PM, Walkinshaw MD. Structure, 2003; 11(4):399–410. DOI: 10.1016/S0969-2126(03)00060-1.
34 Taylor P, Blackburn E, Sheng YG, Harding S, Hsin K-Y, Kan D, Shave S, Walkinshaw MD. British journal of pharmacology, 2008; 153 Suppl:S55–S67. DOI: 10.1038/sj.bjp.0707532.
35 Hsin KY, Morgan HP, Shave SR, Hinton AC, Taylor P, Walkinshaw MD. Nucleic Acids Research, 2010; 39(SUPPL. 1):1–7. DOI: 10.1093/nar/gkq878.